| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nosupbnd1.1 |
⊢ 𝑆 = if ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 , ( ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) ∪ { 〈 dom ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) , 2o 〉 } ) , ( 𝑔 ∈ { 𝑦 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑦 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑦 ) = ( 𝑣 ↾ suc 𝑦 ) ) ) } ↦ ( ℩ 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝑔 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝑔 ) = ( 𝑣 ↾ suc 𝑔 ) ) ∧ ( 𝑢 ‘ 𝑔 ) = 𝑥 ) ) ) ) |
| 2 |
1
|
nosupno |
⊢ ( ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) → 𝑆 ∈ No ) |
| 3 |
2
|
3ad2ant2 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → 𝑆 ∈ No ) |
| 4 |
|
nodmord |
⊢ ( 𝑆 ∈ No → Ord dom 𝑆 ) |
| 5 |
|
ordirr |
⊢ ( Ord dom 𝑆 → ¬ dom 𝑆 ∈ dom 𝑆 ) |
| 6 |
3 4 5
|
3syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ¬ dom 𝑆 ∈ dom 𝑆 ) |
| 7 |
|
simpl3l |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) → 𝑈 ∈ 𝐴 ) |
| 8 |
|
ndmfv |
⊢ ( ¬ dom 𝑆 ∈ dom 𝑈 → ( 𝑈 ‘ dom 𝑆 ) = ∅ ) |
| 9 |
|
2on |
⊢ 2o ∈ On |
| 10 |
9
|
elexi |
⊢ 2o ∈ V |
| 11 |
10
|
prid2 |
⊢ 2o ∈ { 1o , 2o } |
| 12 |
11
|
nosgnn0i |
⊢ ∅ ≠ 2o |
| 13 |
|
neeq1 |
⊢ ( ( 𝑈 ‘ dom 𝑆 ) = ∅ → ( ( 𝑈 ‘ dom 𝑆 ) ≠ 2o ↔ ∅ ≠ 2o ) ) |
| 14 |
12 13
|
mpbiri |
⊢ ( ( 𝑈 ‘ dom 𝑆 ) = ∅ → ( 𝑈 ‘ dom 𝑆 ) ≠ 2o ) |
| 15 |
14
|
neneqd |
⊢ ( ( 𝑈 ‘ dom 𝑆 ) = ∅ → ¬ ( 𝑈 ‘ dom 𝑆 ) = 2o ) |
| 16 |
8 15
|
syl |
⊢ ( ¬ dom 𝑆 ∈ dom 𝑈 → ¬ ( 𝑈 ‘ dom 𝑆 ) = 2o ) |
| 17 |
16
|
con4i |
⊢ ( ( 𝑈 ‘ dom 𝑆 ) = 2o → dom 𝑆 ∈ dom 𝑈 ) |
| 18 |
17
|
adantl |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) → dom 𝑆 ∈ dom 𝑈 ) |
| 19 |
|
simpl2l |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) → 𝐴 ⊆ No ) |
| 20 |
19
|
adantr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → 𝐴 ⊆ No ) |
| 21 |
7
|
adantr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → 𝑈 ∈ 𝐴 ) |
| 22 |
20 21
|
sseldd |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → 𝑈 ∈ No ) |
| 23 |
|
simprl |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → 𝑞 ∈ 𝐴 ) |
| 24 |
20 23
|
sseldd |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → 𝑞 ∈ No ) |
| 25 |
3
|
adantr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) → 𝑆 ∈ No ) |
| 26 |
25
|
adantr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → 𝑆 ∈ No ) |
| 27 |
|
nodmon |
⊢ ( 𝑆 ∈ No → dom 𝑆 ∈ On ) |
| 28 |
26 27
|
syl |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → dom 𝑆 ∈ On ) |
| 29 |
|
simpl3r |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) → ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) |
| 30 |
29
|
adantr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) |
| 31 |
|
simpll1 |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ) |
| 32 |
|
simpll2 |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ) |
| 33 |
|
simpll3 |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) |
| 34 |
|
simpr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) |
| 35 |
1
|
nosupbnd1lem2 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) ) → ( 𝑞 ↾ dom 𝑆 ) = 𝑆 ) |
| 36 |
31 32 33 34 35
|
syl112anc |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → ( 𝑞 ↾ dom 𝑆 ) = 𝑆 ) |
| 37 |
30 36
|
eqtr4d |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → ( 𝑈 ↾ dom 𝑆 ) = ( 𝑞 ↾ dom 𝑆 ) ) |
| 38 |
|
simplr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → ( 𝑈 ‘ dom 𝑆 ) = 2o ) |
| 39 |
|
simprr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → ¬ 𝑞 <s 𝑈 ) |
| 40 |
|
nolesgn2ores |
⊢ ( ( ( 𝑈 ∈ No ∧ 𝑞 ∈ No ∧ dom 𝑆 ∈ On ) ∧ ( ( 𝑈 ↾ dom 𝑆 ) = ( 𝑞 ↾ dom 𝑆 ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ¬ 𝑞 <s 𝑈 ) → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) |
| 41 |
22 24 28 37 38 39 40
|
syl321anc |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 <s 𝑈 ) ) → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) |
| 42 |
41
|
expr |
⊢ ( ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) ∧ 𝑞 ∈ 𝐴 ) → ( ¬ 𝑞 <s 𝑈 → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) |
| 43 |
42
|
ralrimiva |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) → ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑈 → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) |
| 44 |
|
dmeq |
⊢ ( 𝑝 = 𝑈 → dom 𝑝 = dom 𝑈 ) |
| 45 |
44
|
eleq2d |
⊢ ( 𝑝 = 𝑈 → ( dom 𝑆 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑈 ) ) |
| 46 |
|
breq2 |
⊢ ( 𝑝 = 𝑈 → ( 𝑞 <s 𝑝 ↔ 𝑞 <s 𝑈 ) ) |
| 47 |
46
|
notbid |
⊢ ( 𝑝 = 𝑈 → ( ¬ 𝑞 <s 𝑝 ↔ ¬ 𝑞 <s 𝑈 ) ) |
| 48 |
|
reseq1 |
⊢ ( 𝑝 = 𝑈 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑈 ↾ suc dom 𝑆 ) ) |
| 49 |
48
|
eqeq1d |
⊢ ( 𝑝 = 𝑈 → ( ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ↔ ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) |
| 50 |
47 49
|
imbi12d |
⊢ ( 𝑝 = 𝑈 → ( ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ↔ ( ¬ 𝑞 <s 𝑈 → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) |
| 51 |
50
|
ralbidv |
⊢ ( 𝑝 = 𝑈 → ( ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ↔ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑈 → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) |
| 52 |
45 51
|
anbi12d |
⊢ ( 𝑝 = 𝑈 → ( ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ↔ ( dom 𝑆 ∈ dom 𝑈 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑈 → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) ) |
| 53 |
52
|
rspcev |
⊢ ( ( 𝑈 ∈ 𝐴 ∧ ( dom 𝑆 ∈ dom 𝑈 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑈 → ( 𝑈 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) → ∃ 𝑝 ∈ 𝐴 ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) |
| 54 |
7 18 43 53
|
syl12anc |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) → ∃ 𝑝 ∈ 𝐴 ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) |
| 55 |
1
|
nosupdm |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = { 𝑧 ∣ ∃ 𝑝 ∈ 𝐴 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) } ) |
| 56 |
55
|
eleq2d |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → ( dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ { 𝑧 ∣ ∃ 𝑝 ∈ 𝐴 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) } ) ) |
| 57 |
56
|
3ad2ant1 |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ( dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ { 𝑧 ∣ ∃ 𝑝 ∈ 𝐴 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) } ) ) |
| 58 |
|
eleq1 |
⊢ ( 𝑧 = dom 𝑆 → ( 𝑧 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑝 ) ) |
| 59 |
|
suceq |
⊢ ( 𝑧 = dom 𝑆 → suc 𝑧 = suc dom 𝑆 ) |
| 60 |
59
|
reseq2d |
⊢ ( 𝑧 = dom 𝑆 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑝 ↾ suc dom 𝑆 ) ) |
| 61 |
59
|
reseq2d |
⊢ ( 𝑧 = dom 𝑆 → ( 𝑞 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) |
| 62 |
60 61
|
eqeq12d |
⊢ ( 𝑧 = dom 𝑆 → ( ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ↔ ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) |
| 63 |
62
|
imbi2d |
⊢ ( 𝑧 = dom 𝑆 → ( ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ↔ ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) |
| 64 |
63
|
ralbidv |
⊢ ( 𝑧 = dom 𝑆 → ( ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ↔ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) |
| 65 |
58 64
|
anbi12d |
⊢ ( 𝑧 = dom 𝑆 → ( ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) ↔ ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) ) |
| 66 |
65
|
rexbidv |
⊢ ( 𝑧 = dom 𝑆 → ( ∃ 𝑝 ∈ 𝐴 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) ↔ ∃ 𝑝 ∈ 𝐴 ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) ) |
| 67 |
66
|
elabg |
⊢ ( dom 𝑆 ∈ On → ( dom 𝑆 ∈ { 𝑧 ∣ ∃ 𝑝 ∈ 𝐴 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) } ↔ ∃ 𝑝 ∈ 𝐴 ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) ) |
| 68 |
3 27 67
|
3syl |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ( dom 𝑆 ∈ { 𝑧 ∣ ∃ 𝑝 ∈ 𝐴 ( 𝑧 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc 𝑧 ) = ( 𝑞 ↾ suc 𝑧 ) ) ) } ↔ ∃ 𝑝 ∈ 𝐴 ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) ) |
| 69 |
57 68
|
bitrd |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ( dom 𝑆 ∈ dom 𝑆 ↔ ∃ 𝑝 ∈ 𝐴 ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) ) |
| 70 |
69
|
adantr |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) → ( dom 𝑆 ∈ dom 𝑆 ↔ ∃ 𝑝 ∈ 𝐴 ( dom 𝑆 ∈ dom 𝑝 ∧ ∀ 𝑞 ∈ 𝐴 ( ¬ 𝑞 <s 𝑝 → ( 𝑝 ↾ suc dom 𝑆 ) = ( 𝑞 ↾ suc dom 𝑆 ) ) ) ) ) |
| 71 |
54 70
|
mpbird |
⊢ ( ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) ∧ ( 𝑈 ‘ dom 𝑆 ) = 2o ) → dom 𝑆 ∈ dom 𝑆 ) |
| 72 |
6 71
|
mtand |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ¬ ( 𝑈 ‘ dom 𝑆 ) = 2o ) |
| 73 |
72
|
neqned |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ) ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑈 ↾ dom 𝑆 ) = 𝑆 ) ) → ( 𝑈 ‘ dom 𝑆 ) ≠ 2o ) |