| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1l |
⊢ ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → 𝑈 ∈ 𝐴 ) |
| 2 |
|
simp3 |
⊢ ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) |
| 3 |
|
breq1 |
⊢ ( 𝑎 = 𝑈 → ( 𝑎 <s 𝑍 ↔ 𝑈 <s 𝑍 ) ) |
| 4 |
3
|
rspcv |
⊢ ( 𝑈 ∈ 𝐴 → ( ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 → 𝑈 <s 𝑍 ) ) |
| 5 |
1 2 4
|
sylc |
⊢ ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → 𝑈 <s 𝑍 ) |
| 6 |
|
simpl21 |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → 𝐴 ⊆ No ) |
| 7 |
|
simpl1l |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → 𝑈 ∈ 𝐴 ) |
| 8 |
6 7
|
sseldd |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → 𝑈 ∈ No ) |
| 9 |
|
simpl23 |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → 𝑍 ∈ No ) |
| 10 |
|
simp21 |
⊢ ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → 𝐴 ⊆ No ) |
| 11 |
10 1
|
sseldd |
⊢ ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → 𝑈 ∈ No ) |
| 12 |
|
sltso |
⊢ <s Or No |
| 13 |
|
sonr |
⊢ ( ( <s Or No ∧ 𝑈 ∈ No ) → ¬ 𝑈 <s 𝑈 ) |
| 14 |
12 13
|
mpan |
⊢ ( 𝑈 ∈ No → ¬ 𝑈 <s 𝑈 ) |
| 15 |
11 14
|
syl |
⊢ ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → ¬ 𝑈 <s 𝑈 ) |
| 16 |
|
breq2 |
⊢ ( 𝑈 = 𝑍 → ( 𝑈 <s 𝑈 ↔ 𝑈 <s 𝑍 ) ) |
| 17 |
16
|
notbid |
⊢ ( 𝑈 = 𝑍 → ( ¬ 𝑈 <s 𝑈 ↔ ¬ 𝑈 <s 𝑍 ) ) |
| 18 |
15 17
|
syl5ibcom |
⊢ ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → ( 𝑈 = 𝑍 → ¬ 𝑈 <s 𝑍 ) ) |
| 19 |
18
|
con2d |
⊢ ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → ( 𝑈 <s 𝑍 → ¬ 𝑈 = 𝑍 ) ) |
| 20 |
19
|
imp |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → ¬ 𝑈 = 𝑍 ) |
| 21 |
20
|
neqned |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → 𝑈 ≠ 𝑍 ) |
| 22 |
|
nosepssdm |
⊢ ( ( 𝑈 ∈ No ∧ 𝑍 ∈ No ∧ 𝑈 ≠ 𝑍 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ⊆ dom 𝑈 ) |
| 23 |
8 9 21 22
|
syl3anc |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ⊆ dom 𝑈 ) |
| 24 |
|
nosepon |
⊢ ( ( 𝑈 ∈ No ∧ 𝑍 ∈ No ∧ 𝑈 ≠ 𝑍 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ On ) |
| 25 |
8 9 21 24
|
syl3anc |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ On ) |
| 26 |
|
nodmon |
⊢ ( 𝑈 ∈ No → dom 𝑈 ∈ On ) |
| 27 |
8 26
|
syl |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → dom 𝑈 ∈ On ) |
| 28 |
|
onsseleq |
⊢ ( ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ On ∧ dom 𝑈 ∈ On ) → ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ⊆ dom 𝑈 ↔ ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ∨ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ) ) |
| 29 |
25 27 28
|
syl2anc |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ⊆ dom 𝑈 ↔ ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ∨ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ) ) |
| 30 |
8
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → 𝑈 ∈ No ) |
| 31 |
9
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → 𝑍 ∈ No ) |
| 32 |
21
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → 𝑈 ≠ 𝑍 ) |
| 33 |
30 31 32 24
|
syl3anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ On ) |
| 34 |
|
onelon |
⊢ ( ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ On ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → 𝑞 ∈ On ) |
| 35 |
33 34
|
sylan |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → 𝑞 ∈ On ) |
| 36 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) |
| 37 |
|
fveq2 |
⊢ ( 𝑥 = 𝑞 → ( 𝑈 ‘ 𝑥 ) = ( 𝑈 ‘ 𝑞 ) ) |
| 38 |
|
fveq2 |
⊢ ( 𝑥 = 𝑞 → ( 𝑍 ‘ 𝑥 ) = ( 𝑍 ‘ 𝑞 ) ) |
| 39 |
37 38
|
neeq12d |
⊢ ( 𝑥 = 𝑞 → ( ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) ↔ ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ) ) |
| 40 |
39
|
onnminsb |
⊢ ( 𝑞 ∈ On → ( 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } → ¬ ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ) ) |
| 41 |
35 36 40
|
sylc |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → ¬ ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ) |
| 42 |
|
df-ne |
⊢ ( ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ↔ ¬ ( 𝑈 ‘ 𝑞 ) = ( 𝑍 ‘ 𝑞 ) ) |
| 43 |
42
|
con2bii |
⊢ ( ( 𝑈 ‘ 𝑞 ) = ( 𝑍 ‘ 𝑞 ) ↔ ¬ ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ) |
| 44 |
41 43
|
sylibr |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → ( 𝑈 ‘ 𝑞 ) = ( 𝑍 ‘ 𝑞 ) ) |
| 45 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) |
| 46 |
27
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → dom 𝑈 ∈ On ) |
| 47 |
46
|
adantr |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → dom 𝑈 ∈ On ) |
| 48 |
|
ontr1 |
⊢ ( dom 𝑈 ∈ On → ( ( 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → 𝑞 ∈ dom 𝑈 ) ) |
| 49 |
47 48
|
syl |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → ( ( 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → 𝑞 ∈ dom 𝑈 ) ) |
| 50 |
36 45 49
|
mp2and |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → 𝑞 ∈ dom 𝑈 ) |
| 51 |
50
|
fvresd |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑍 ‘ 𝑞 ) ) |
| 52 |
44 51
|
eqtr4d |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) ∧ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) → ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ) |
| 53 |
52
|
ralrimiva |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ∀ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ) |
| 54 |
|
simplr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → 𝑈 <s 𝑍 ) |
| 55 |
|
sltval2 |
⊢ ( ( 𝑈 ∈ No ∧ 𝑍 ∈ No ) → ( 𝑈 <s 𝑍 ↔ ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) ) |
| 56 |
30 31 55
|
syl2anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑈 <s 𝑍 ↔ ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) ) |
| 57 |
54 56
|
mpbid |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) |
| 58 |
|
simpr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) |
| 59 |
58
|
fvresd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) = ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) |
| 60 |
57 59
|
breqtrrd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝑍 ↾ dom 𝑈 ) ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) |
| 61 |
|
raleq |
⊢ ( 𝑝 = ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } → ( ∀ 𝑞 ∈ 𝑝 ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ↔ ∀ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ) ) |
| 62 |
|
fveq2 |
⊢ ( 𝑝 = ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } → ( 𝑈 ‘ 𝑝 ) = ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) |
| 63 |
|
fveq2 |
⊢ ( 𝑝 = ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } → ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑝 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) |
| 64 |
62 63
|
breq12d |
⊢ ( 𝑝 = ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } → ( ( 𝑈 ‘ 𝑝 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑝 ) ↔ ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝑍 ↾ dom 𝑈 ) ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) ) |
| 65 |
61 64
|
anbi12d |
⊢ ( 𝑝 = ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } → ( ( ∀ 𝑞 ∈ 𝑝 ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ∧ ( 𝑈 ‘ 𝑝 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑝 ) ) ↔ ( ∀ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ∧ ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝑍 ↾ dom 𝑈 ) ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) ) ) |
| 66 |
65
|
rspcev |
⊢ ( ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ On ∧ ( ∀ 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ∧ ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝑍 ↾ dom 𝑈 ) ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) ) → ∃ 𝑝 ∈ On ( ∀ 𝑞 ∈ 𝑝 ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ∧ ( 𝑈 ‘ 𝑝 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑝 ) ) ) |
| 67 |
33 53 60 66
|
syl12anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ∃ 𝑝 ∈ On ( ∀ 𝑞 ∈ 𝑝 ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ∧ ( 𝑈 ‘ 𝑝 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑝 ) ) ) |
| 68 |
|
noreson |
⊢ ( ( 𝑍 ∈ No ∧ dom 𝑈 ∈ On ) → ( 𝑍 ↾ dom 𝑈 ) ∈ No ) |
| 69 |
31 46 68
|
syl2anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑍 ↾ dom 𝑈 ) ∈ No ) |
| 70 |
|
sltval |
⊢ ( ( 𝑈 ∈ No ∧ ( 𝑍 ↾ dom 𝑈 ) ∈ No ) → ( 𝑈 <s ( 𝑍 ↾ dom 𝑈 ) ↔ ∃ 𝑝 ∈ On ( ∀ 𝑞 ∈ 𝑝 ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ∧ ( 𝑈 ‘ 𝑝 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑝 ) ) ) ) |
| 71 |
30 69 70
|
syl2anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑈 <s ( 𝑍 ↾ dom 𝑈 ) ↔ ∃ 𝑝 ∈ On ( ∀ 𝑞 ∈ 𝑝 ( 𝑈 ‘ 𝑞 ) = ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) ∧ ( 𝑈 ‘ 𝑝 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑝 ) ) ) ) |
| 72 |
67 71
|
mpbird |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → 𝑈 <s ( 𝑍 ↾ dom 𝑈 ) ) |
| 73 |
|
df-res |
⊢ ( { 〈 dom 𝑈 , 2o 〉 } ↾ dom 𝑈 ) = ( { 〈 dom 𝑈 , 2o 〉 } ∩ ( dom 𝑈 × V ) ) |
| 74 |
|
2on |
⊢ 2o ∈ On |
| 75 |
|
xpsng |
⊢ ( ( dom 𝑈 ∈ On ∧ 2o ∈ On ) → ( { dom 𝑈 } × { 2o } ) = { 〈 dom 𝑈 , 2o 〉 } ) |
| 76 |
46 74 75
|
sylancl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( { dom 𝑈 } × { 2o } ) = { 〈 dom 𝑈 , 2o 〉 } ) |
| 77 |
76
|
ineq1d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( { dom 𝑈 } × { 2o } ) ∩ ( dom 𝑈 × V ) ) = ( { 〈 dom 𝑈 , 2o 〉 } ∩ ( dom 𝑈 × V ) ) ) |
| 78 |
|
incom |
⊢ ( { dom 𝑈 } ∩ dom 𝑈 ) = ( dom 𝑈 ∩ { dom 𝑈 } ) |
| 79 |
|
nodmord |
⊢ ( 𝑈 ∈ No → Ord dom 𝑈 ) |
| 80 |
|
ordirr |
⊢ ( Ord dom 𝑈 → ¬ dom 𝑈 ∈ dom 𝑈 ) |
| 81 |
30 79 80
|
3syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ¬ dom 𝑈 ∈ dom 𝑈 ) |
| 82 |
|
disjsn |
⊢ ( ( dom 𝑈 ∩ { dom 𝑈 } ) = ∅ ↔ ¬ dom 𝑈 ∈ dom 𝑈 ) |
| 83 |
81 82
|
sylibr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( dom 𝑈 ∩ { dom 𝑈 } ) = ∅ ) |
| 84 |
78 83
|
eqtrid |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( { dom 𝑈 } ∩ dom 𝑈 ) = ∅ ) |
| 85 |
|
xpdisj1 |
⊢ ( ( { dom 𝑈 } ∩ dom 𝑈 ) = ∅ → ( ( { dom 𝑈 } × { 2o } ) ∩ ( dom 𝑈 × V ) ) = ∅ ) |
| 86 |
84 85
|
syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( { dom 𝑈 } × { 2o } ) ∩ ( dom 𝑈 × V ) ) = ∅ ) |
| 87 |
77 86
|
eqtr3d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( { 〈 dom 𝑈 , 2o 〉 } ∩ ( dom 𝑈 × V ) ) = ∅ ) |
| 88 |
73 87
|
eqtrid |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( { 〈 dom 𝑈 , 2o 〉 } ↾ dom 𝑈 ) = ∅ ) |
| 89 |
88
|
uneq2d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑈 ↾ dom 𝑈 ) ∪ ( { 〈 dom 𝑈 , 2o 〉 } ↾ dom 𝑈 ) ) = ( ( 𝑈 ↾ dom 𝑈 ) ∪ ∅ ) ) |
| 90 |
|
resundir |
⊢ ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ↾ dom 𝑈 ) = ( ( 𝑈 ↾ dom 𝑈 ) ∪ ( { 〈 dom 𝑈 , 2o 〉 } ↾ dom 𝑈 ) ) |
| 91 |
|
un0 |
⊢ ( ( 𝑈 ↾ dom 𝑈 ) ∪ ∅ ) = ( 𝑈 ↾ dom 𝑈 ) |
| 92 |
91
|
eqcomi |
⊢ ( 𝑈 ↾ dom 𝑈 ) = ( ( 𝑈 ↾ dom 𝑈 ) ∪ ∅ ) |
| 93 |
89 90 92
|
3eqtr4g |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ↾ dom 𝑈 ) = ( 𝑈 ↾ dom 𝑈 ) ) |
| 94 |
|
nofun |
⊢ ( 𝑈 ∈ No → Fun 𝑈 ) |
| 95 |
|
funrel |
⊢ ( Fun 𝑈 → Rel 𝑈 ) |
| 96 |
|
resdm |
⊢ ( Rel 𝑈 → ( 𝑈 ↾ dom 𝑈 ) = 𝑈 ) |
| 97 |
30 94 95 96
|
4syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑈 ↾ dom 𝑈 ) = 𝑈 ) |
| 98 |
93 97
|
eqtrd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ↾ dom 𝑈 ) = 𝑈 ) |
| 99 |
|
sssucid |
⊢ dom 𝑈 ⊆ suc dom 𝑈 |
| 100 |
|
resabs1 |
⊢ ( dom 𝑈 ⊆ suc dom 𝑈 → ( ( 𝑍 ↾ suc dom 𝑈 ) ↾ dom 𝑈 ) = ( 𝑍 ↾ dom 𝑈 ) ) |
| 101 |
99 100
|
mp1i |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑍 ↾ suc dom 𝑈 ) ↾ dom 𝑈 ) = ( 𝑍 ↾ dom 𝑈 ) ) |
| 102 |
72 98 101
|
3brtr4d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ↾ dom 𝑈 ) <s ( ( 𝑍 ↾ suc dom 𝑈 ) ↾ dom 𝑈 ) ) |
| 103 |
74
|
elexi |
⊢ 2o ∈ V |
| 104 |
103
|
prid2 |
⊢ 2o ∈ { 1o , 2o } |
| 105 |
104
|
noextend |
⊢ ( 𝑈 ∈ No → ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ∈ No ) |
| 106 |
8 105
|
syl |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ∈ No ) |
| 107 |
106
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ∈ No ) |
| 108 |
|
onsucb |
⊢ ( dom 𝑈 ∈ On ↔ suc dom 𝑈 ∈ On ) |
| 109 |
27 108
|
sylib |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → suc dom 𝑈 ∈ On ) |
| 110 |
|
noreson |
⊢ ( ( 𝑍 ∈ No ∧ suc dom 𝑈 ∈ On ) → ( 𝑍 ↾ suc dom 𝑈 ) ∈ No ) |
| 111 |
9 109 110
|
syl2anc |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → ( 𝑍 ↾ suc dom 𝑈 ) ∈ No ) |
| 112 |
111
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑍 ↾ suc dom 𝑈 ) ∈ No ) |
| 113 |
|
sltres |
⊢ ( ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ∈ No ∧ ( 𝑍 ↾ suc dom 𝑈 ) ∈ No ∧ dom 𝑈 ∈ On ) → ( ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ↾ dom 𝑈 ) <s ( ( 𝑍 ↾ suc dom 𝑈 ) ↾ dom 𝑈 ) → ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑈 ) ) ) |
| 114 |
107 112 46 113
|
syl3anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ↾ dom 𝑈 ) <s ( ( 𝑍 ↾ suc dom 𝑈 ) ↾ dom 𝑈 ) → ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑈 ) ) ) |
| 115 |
102 114
|
mpd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑈 ) ) |
| 116 |
|
soasym |
⊢ ( ( <s Or No ∧ ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ∈ No ∧ ( 𝑍 ↾ suc dom 𝑈 ) ∈ No ) ) → ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑈 ) → ¬ ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) ) |
| 117 |
12 116
|
mpan |
⊢ ( ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ∈ No ∧ ( 𝑍 ↾ suc dom 𝑈 ) ∈ No ) → ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑈 ) → ¬ ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) ) |
| 118 |
107 112 117
|
syl2anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) <s ( 𝑍 ↾ suc dom 𝑈 ) → ¬ ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) ) |
| 119 |
115 118
|
mpd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ) → ¬ ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) |
| 120 |
|
df-suc |
⊢ suc dom 𝑈 = ( dom 𝑈 ∪ { dom 𝑈 } ) |
| 121 |
120
|
reseq2i |
⊢ ( 𝑍 ↾ suc dom 𝑈 ) = ( 𝑍 ↾ ( dom 𝑈 ∪ { dom 𝑈 } ) ) |
| 122 |
|
resundi |
⊢ ( 𝑍 ↾ ( dom 𝑈 ∪ { dom 𝑈 } ) ) = ( ( 𝑍 ↾ dom 𝑈 ) ∪ ( 𝑍 ↾ { dom 𝑈 } ) ) |
| 123 |
121 122
|
eqtri |
⊢ ( 𝑍 ↾ suc dom 𝑈 ) = ( ( 𝑍 ↾ dom 𝑈 ) ∪ ( 𝑍 ↾ { dom 𝑈 } ) ) |
| 124 |
|
dmres |
⊢ dom ( 𝑍 ↾ dom 𝑈 ) = ( dom 𝑈 ∩ dom 𝑍 ) |
| 125 |
|
simpr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) |
| 126 |
|
necom |
⊢ ( ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) ↔ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) ) |
| 127 |
126
|
rabbii |
⊢ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } |
| 128 |
127
|
inteqi |
⊢ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } |
| 129 |
9
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → 𝑍 ∈ No ) |
| 130 |
8
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → 𝑈 ∈ No ) |
| 131 |
21
|
adantr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → 𝑈 ≠ 𝑍 ) |
| 132 |
131
|
necomd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → 𝑍 ≠ 𝑈 ) |
| 133 |
|
nosepssdm |
⊢ ( ( 𝑍 ∈ No ∧ 𝑈 ∈ No ∧ 𝑍 ≠ 𝑈 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ⊆ dom 𝑍 ) |
| 134 |
129 130 132 133
|
syl3anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑍 ‘ 𝑥 ) ≠ ( 𝑈 ‘ 𝑥 ) } ⊆ dom 𝑍 ) |
| 135 |
128 134
|
eqsstrid |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ⊆ dom 𝑍 ) |
| 136 |
125 135
|
eqsstrrd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → dom 𝑈 ⊆ dom 𝑍 ) |
| 137 |
|
dfss2 |
⊢ ( dom 𝑈 ⊆ dom 𝑍 ↔ ( dom 𝑈 ∩ dom 𝑍 ) = dom 𝑈 ) |
| 138 |
136 137
|
sylib |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( dom 𝑈 ∩ dom 𝑍 ) = dom 𝑈 ) |
| 139 |
124 138
|
eqtrid |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → dom ( 𝑍 ↾ dom 𝑈 ) = dom 𝑈 ) |
| 140 |
139
|
eleq2d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑞 ∈ dom ( 𝑍 ↾ dom 𝑈 ) ↔ 𝑞 ∈ dom 𝑈 ) ) |
| 141 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ∧ 𝑞 ∈ dom 𝑈 ) → 𝑞 ∈ dom 𝑈 ) |
| 142 |
141
|
fvresd |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ∧ 𝑞 ∈ dom 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑍 ‘ 𝑞 ) ) |
| 143 |
130 26
|
syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → dom 𝑈 ∈ On ) |
| 144 |
|
onelon |
⊢ ( ( dom 𝑈 ∈ On ∧ 𝑞 ∈ dom 𝑈 ) → 𝑞 ∈ On ) |
| 145 |
143 144
|
sylan |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ∧ 𝑞 ∈ dom 𝑈 ) → 𝑞 ∈ On ) |
| 146 |
125
|
eleq2d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ↔ 𝑞 ∈ dom 𝑈 ) ) |
| 147 |
146
|
biimpar |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ∧ 𝑞 ∈ dom 𝑈 ) → 𝑞 ∈ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) |
| 148 |
145 147 40
|
sylc |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ∧ 𝑞 ∈ dom 𝑈 ) → ¬ ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ) |
| 149 |
|
nesym |
⊢ ( ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ↔ ¬ ( 𝑍 ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) |
| 150 |
149
|
con2bii |
⊢ ( ( 𝑍 ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ↔ ¬ ( 𝑈 ‘ 𝑞 ) ≠ ( 𝑍 ‘ 𝑞 ) ) |
| 151 |
148 150
|
sylibr |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ∧ 𝑞 ∈ dom 𝑈 ) → ( 𝑍 ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) |
| 152 |
142 151
|
eqtrd |
⊢ ( ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ∧ 𝑞 ∈ dom 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) |
| 153 |
152
|
ex |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑞 ∈ dom 𝑈 → ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) ) |
| 154 |
140 153
|
sylbid |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑞 ∈ dom ( 𝑍 ↾ dom 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) ) |
| 155 |
154
|
ralrimiv |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ∀ 𝑞 ∈ dom ( 𝑍 ↾ dom 𝑈 ) ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) |
| 156 |
|
nofun |
⊢ ( 𝑍 ∈ No → Fun 𝑍 ) |
| 157 |
|
funres |
⊢ ( Fun 𝑍 → Fun ( 𝑍 ↾ dom 𝑈 ) ) |
| 158 |
129 156 157
|
3syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → Fun ( 𝑍 ↾ dom 𝑈 ) ) |
| 159 |
130 94
|
syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → Fun 𝑈 ) |
| 160 |
|
eqfunfv |
⊢ ( ( Fun ( 𝑍 ↾ dom 𝑈 ) ∧ Fun 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) = 𝑈 ↔ ( dom ( 𝑍 ↾ dom 𝑈 ) = dom 𝑈 ∧ ∀ 𝑞 ∈ dom ( 𝑍 ↾ dom 𝑈 ) ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) ) ) |
| 161 |
158 159 160
|
syl2anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) = 𝑈 ↔ ( dom ( 𝑍 ↾ dom 𝑈 ) = dom 𝑈 ∧ ∀ 𝑞 ∈ dom ( 𝑍 ↾ dom 𝑈 ) ( ( 𝑍 ↾ dom 𝑈 ) ‘ 𝑞 ) = ( 𝑈 ‘ 𝑞 ) ) ) ) |
| 162 |
139 155 161
|
mpbir2and |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑍 ↾ dom 𝑈 ) = 𝑈 ) |
| 163 |
129 156
|
syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → Fun 𝑍 ) |
| 164 |
|
funfn |
⊢ ( Fun 𝑍 ↔ 𝑍 Fn dom 𝑍 ) |
| 165 |
163 164
|
sylib |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → 𝑍 Fn dom 𝑍 ) |
| 166 |
|
1oex |
⊢ 1o ∈ V |
| 167 |
166
|
prid1 |
⊢ 1o ∈ { 1o , 2o } |
| 168 |
167
|
nosgnn0i |
⊢ ∅ ≠ 1o |
| 169 |
|
ndmfv |
⊢ ( ¬ dom 𝑈 ∈ dom 𝑈 → ( 𝑈 ‘ dom 𝑈 ) = ∅ ) |
| 170 |
130 79 80 169
|
4syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑈 ‘ dom 𝑈 ) = ∅ ) |
| 171 |
170
|
neeq1d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( ( 𝑈 ‘ dom 𝑈 ) ≠ 1o ↔ ∅ ≠ 1o ) ) |
| 172 |
168 171
|
mpbiri |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑈 ‘ dom 𝑈 ) ≠ 1o ) |
| 173 |
172
|
neneqd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ¬ ( 𝑈 ‘ dom 𝑈 ) = 1o ) |
| 174 |
173
|
intnanrd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ¬ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = ∅ ) ) |
| 175 |
173
|
intnanrd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ¬ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ) |
| 176 |
|
simplr |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → 𝑈 <s 𝑍 ) |
| 177 |
130 129 55
|
syl2anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑈 <s 𝑍 ↔ ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) ) |
| 178 |
176 177
|
mpbid |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) ) |
| 179 |
|
fveq2 |
⊢ ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 → ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) = ( 𝑈 ‘ dom 𝑈 ) ) |
| 180 |
179
|
adantl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑈 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) = ( 𝑈 ‘ dom 𝑈 ) ) |
| 181 |
|
fveq2 |
⊢ ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 → ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) = ( 𝑍 ‘ dom 𝑈 ) ) |
| 182 |
181
|
adantl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑍 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ) = ( 𝑍 ‘ dom 𝑈 ) ) |
| 183 |
178 180 182
|
3brtr3d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑈 ‘ dom 𝑈 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑍 ‘ dom 𝑈 ) ) |
| 184 |
|
fvex |
⊢ ( 𝑈 ‘ dom 𝑈 ) ∈ V |
| 185 |
|
fvex |
⊢ ( 𝑍 ‘ dom 𝑈 ) ∈ V |
| 186 |
184 185
|
brtp |
⊢ ( ( 𝑈 ‘ dom 𝑈 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑍 ‘ dom 𝑈 ) ↔ ( ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = ∅ ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = ∅ ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ) ) |
| 187 |
|
3orrot |
⊢ ( ( ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = ∅ ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = ∅ ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ) ↔ ( ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = ∅ ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = ∅ ) ) ) |
| 188 |
|
3orrot |
⊢ ( ( ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = ∅ ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = ∅ ) ) ↔ ( ( ( 𝑈 ‘ dom 𝑈 ) = ∅ ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = ∅ ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ) ) |
| 189 |
186 187 188
|
3bitri |
⊢ ( ( 𝑈 ‘ dom 𝑈 ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝑍 ‘ dom 𝑈 ) ↔ ( ( ( 𝑈 ‘ dom 𝑈 ) = ∅ ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = ∅ ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ) ) |
| 190 |
183 189
|
sylib |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( ( ( 𝑈 ‘ dom 𝑈 ) = ∅ ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = ∅ ) ∨ ( ( 𝑈 ‘ dom 𝑈 ) = 1o ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ) ) |
| 191 |
174 175 190
|
ecase23d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( ( 𝑈 ‘ dom 𝑈 ) = ∅ ∧ ( 𝑍 ‘ dom 𝑈 ) = 2o ) ) |
| 192 |
191
|
simprd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑍 ‘ dom 𝑈 ) = 2o ) |
| 193 |
|
ndmfv |
⊢ ( ¬ dom 𝑈 ∈ dom 𝑍 → ( 𝑍 ‘ dom 𝑈 ) = ∅ ) |
| 194 |
104
|
nosgnn0i |
⊢ ∅ ≠ 2o |
| 195 |
|
neeq1 |
⊢ ( ( 𝑍 ‘ dom 𝑈 ) = ∅ → ( ( 𝑍 ‘ dom 𝑈 ) ≠ 2o ↔ ∅ ≠ 2o ) ) |
| 196 |
194 195
|
mpbiri |
⊢ ( ( 𝑍 ‘ dom 𝑈 ) = ∅ → ( 𝑍 ‘ dom 𝑈 ) ≠ 2o ) |
| 197 |
196
|
neneqd |
⊢ ( ( 𝑍 ‘ dom 𝑈 ) = ∅ → ¬ ( 𝑍 ‘ dom 𝑈 ) = 2o ) |
| 198 |
193 197
|
syl |
⊢ ( ¬ dom 𝑈 ∈ dom 𝑍 → ¬ ( 𝑍 ‘ dom 𝑈 ) = 2o ) |
| 199 |
198
|
con4i |
⊢ ( ( 𝑍 ‘ dom 𝑈 ) = 2o → dom 𝑈 ∈ dom 𝑍 ) |
| 200 |
192 199
|
syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → dom 𝑈 ∈ dom 𝑍 ) |
| 201 |
|
fnressn |
⊢ ( ( 𝑍 Fn dom 𝑍 ∧ dom 𝑈 ∈ dom 𝑍 ) → ( 𝑍 ↾ { dom 𝑈 } ) = { 〈 dom 𝑈 , ( 𝑍 ‘ dom 𝑈 ) 〉 } ) |
| 202 |
165 200 201
|
syl2anc |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑍 ↾ { dom 𝑈 } ) = { 〈 dom 𝑈 , ( 𝑍 ‘ dom 𝑈 ) 〉 } ) |
| 203 |
192
|
opeq2d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → 〈 dom 𝑈 , ( 𝑍 ‘ dom 𝑈 ) 〉 = 〈 dom 𝑈 , 2o 〉 ) |
| 204 |
203
|
sneqd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → { 〈 dom 𝑈 , ( 𝑍 ‘ dom 𝑈 ) 〉 } = { 〈 dom 𝑈 , 2o 〉 } ) |
| 205 |
202 204
|
eqtrd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑍 ↾ { dom 𝑈 } ) = { 〈 dom 𝑈 , 2o 〉 } ) |
| 206 |
162 205
|
uneq12d |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( ( 𝑍 ↾ dom 𝑈 ) ∪ ( 𝑍 ↾ { dom 𝑈 } ) ) = ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) |
| 207 |
123 206
|
eqtrid |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ( 𝑍 ↾ suc dom 𝑈 ) = ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) |
| 208 |
|
sonr |
⊢ ( ( <s Or No ∧ ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ∈ No ) → ¬ ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) |
| 209 |
12 208
|
mpan |
⊢ ( ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ∈ No → ¬ ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) |
| 210 |
130 105 209
|
3syl |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ¬ ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) |
| 211 |
207 210
|
eqnbrtrd |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ¬ ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) |
| 212 |
119 211
|
jaodan |
⊢ ( ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) ∧ ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ∨ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) ) → ¬ ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) |
| 213 |
212
|
ex |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → ( ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ∈ dom 𝑈 ∨ ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } = dom 𝑈 ) → ¬ ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) ) |
| 214 |
29 213
|
sylbid |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → ( ∩ { 𝑥 ∈ On ∣ ( 𝑈 ‘ 𝑥 ) ≠ ( 𝑍 ‘ 𝑥 ) } ⊆ dom 𝑈 → ¬ ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) ) |
| 215 |
23 214
|
mpd |
⊢ ( ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) ∧ 𝑈 <s 𝑍 ) → ¬ ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) |
| 216 |
5 215
|
mpdan |
⊢ ( ( ( 𝑈 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦 ) ∧ ( 𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝑍 ∈ No ) ∧ ∀ 𝑎 ∈ 𝐴 𝑎 <s 𝑍 ) → ¬ ( 𝑍 ↾ suc dom 𝑈 ) <s ( 𝑈 ∪ { 〈 dom 𝑈 , 2o 〉 } ) ) |