| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reeanv |
⊢ ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑝 ∈ 𝐴 ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ↔ ( ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ∃ 𝑝 ∈ 𝐴 ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) |
| 2 |
|
breq1 |
⊢ ( 𝑣 = 𝑢 → ( 𝑣 <s 𝑝 ↔ 𝑢 <s 𝑝 ) ) |
| 3 |
2
|
notbid |
⊢ ( 𝑣 = 𝑢 → ( ¬ 𝑣 <s 𝑝 ↔ ¬ 𝑢 <s 𝑝 ) ) |
| 4 |
|
reseq1 |
⊢ ( 𝑣 = 𝑢 → ( 𝑣 ↾ suc 𝐺 ) = ( 𝑢 ↾ suc 𝐺 ) ) |
| 5 |
4
|
eqeq2d |
⊢ ( 𝑣 = 𝑢 → ( ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ↔ ( 𝑝 ↾ suc 𝐺 ) = ( 𝑢 ↾ suc 𝐺 ) ) ) |
| 6 |
3 5
|
imbi12d |
⊢ ( 𝑣 = 𝑢 → ( ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ↔ ( ¬ 𝑢 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑢 ↾ suc 𝐺 ) ) ) ) |
| 7 |
|
simprr2 |
⊢ ( ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) → ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) |
| 9 |
|
simprll |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → 𝑢 ∈ 𝐴 ) |
| 10 |
6 8 9
|
rspcdva |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → ( ¬ 𝑢 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑢 ↾ suc 𝐺 ) ) ) |
| 11 |
|
eqcom |
⊢ ( ( 𝑝 ↾ suc 𝐺 ) = ( 𝑢 ↾ suc 𝐺 ) ↔ ( 𝑢 ↾ suc 𝐺 ) = ( 𝑝 ↾ suc 𝐺 ) ) |
| 12 |
10 11
|
imbitrdi |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → ( ¬ 𝑢 <s 𝑝 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑝 ↾ suc 𝐺 ) ) ) |
| 13 |
|
breq1 |
⊢ ( 𝑣 = 𝑝 → ( 𝑣 <s 𝑢 ↔ 𝑝 <s 𝑢 ) ) |
| 14 |
13
|
notbid |
⊢ ( 𝑣 = 𝑝 → ( ¬ 𝑣 <s 𝑢 ↔ ¬ 𝑝 <s 𝑢 ) ) |
| 15 |
|
reseq1 |
⊢ ( 𝑣 = 𝑝 → ( 𝑣 ↾ suc 𝐺 ) = ( 𝑝 ↾ suc 𝐺 ) ) |
| 16 |
15
|
eqeq2d |
⊢ ( 𝑣 = 𝑝 → ( ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ↔ ( 𝑢 ↾ suc 𝐺 ) = ( 𝑝 ↾ suc 𝐺 ) ) ) |
| 17 |
14 16
|
imbi12d |
⊢ ( 𝑣 = 𝑝 → ( ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ↔ ( ¬ 𝑝 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑝 ↾ suc 𝐺 ) ) ) ) |
| 18 |
|
simprl2 |
⊢ ( ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) → ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) |
| 20 |
|
simprlr |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → 𝑝 ∈ 𝐴 ) |
| 21 |
17 19 20
|
rspcdva |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → ( ¬ 𝑝 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑝 ↾ suc 𝐺 ) ) ) |
| 22 |
|
simpl |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → 𝐴 ⊆ No ) |
| 23 |
22 9
|
sseldd |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → 𝑢 ∈ No ) |
| 24 |
22 20
|
sseldd |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → 𝑝 ∈ No ) |
| 25 |
|
sltso |
⊢ <s Or No |
| 26 |
|
soasym |
⊢ ( ( <s Or No ∧ ( 𝑢 ∈ No ∧ 𝑝 ∈ No ) ) → ( 𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢 ) ) |
| 27 |
25 26
|
mpan |
⊢ ( ( 𝑢 ∈ No ∧ 𝑝 ∈ No ) → ( 𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢 ) ) |
| 28 |
23 24 27
|
syl2anc |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → ( 𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢 ) ) |
| 29 |
|
pm4.62 |
⊢ ( ( 𝑢 <s 𝑝 → ¬ 𝑝 <s 𝑢 ) ↔ ( ¬ 𝑢 <s 𝑝 ∨ ¬ 𝑝 <s 𝑢 ) ) |
| 30 |
28 29
|
sylib |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → ( ¬ 𝑢 <s 𝑝 ∨ ¬ 𝑝 <s 𝑢 ) ) |
| 31 |
12 21 30
|
mpjaod |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑝 ↾ suc 𝐺 ) ) |
| 32 |
31
|
fveq1d |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → ( ( 𝑢 ↾ suc 𝐺 ) ‘ 𝐺 ) = ( ( 𝑝 ↾ suc 𝐺 ) ‘ 𝐺 ) ) |
| 33 |
|
simprl1 |
⊢ ( ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) → 𝐺 ∈ dom 𝑢 ) |
| 34 |
33
|
adantl |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → 𝐺 ∈ dom 𝑢 ) |
| 35 |
|
sucidg |
⊢ ( 𝐺 ∈ dom 𝑢 → 𝐺 ∈ suc 𝐺 ) |
| 36 |
34 35
|
syl |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → 𝐺 ∈ suc 𝐺 ) |
| 37 |
36
|
fvresd |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → ( ( 𝑢 ↾ suc 𝐺 ) ‘ 𝐺 ) = ( 𝑢 ‘ 𝐺 ) ) |
| 38 |
36
|
fvresd |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → ( ( 𝑝 ↾ suc 𝐺 ) ‘ 𝐺 ) = ( 𝑝 ‘ 𝐺 ) ) |
| 39 |
32 37 38
|
3eqtr3d |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → ( 𝑢 ‘ 𝐺 ) = ( 𝑝 ‘ 𝐺 ) ) |
| 40 |
|
simprl3 |
⊢ ( ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) → ( 𝑢 ‘ 𝐺 ) = 𝑥 ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → ( 𝑢 ‘ 𝐺 ) = 𝑥 ) |
| 42 |
|
simprr3 |
⊢ ( ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) → ( 𝑝 ‘ 𝐺 ) = 𝑦 ) |
| 43 |
42
|
adantl |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → ( 𝑝 ‘ 𝐺 ) = 𝑦 ) |
| 44 |
39 41 43
|
3eqtr3d |
⊢ ( ( 𝐴 ⊆ No ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) ) → 𝑥 = 𝑦 ) |
| 45 |
44
|
expr |
⊢ ( ( 𝐴 ⊆ No ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ) → ( ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
| 46 |
45
|
rexlimdvva |
⊢ ( 𝐴 ⊆ No → ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑝 ∈ 𝐴 ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
| 47 |
1 46
|
biimtrrid |
⊢ ( 𝐴 ⊆ No → ( ( ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ∃ 𝑝 ∈ 𝐴 ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
| 48 |
47
|
alrimivv |
⊢ ( 𝐴 ⊆ No → ∀ 𝑥 ∀ 𝑦 ( ( ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ∃ 𝑝 ∈ 𝐴 ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
| 49 |
|
eqeq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑢 ‘ 𝐺 ) = 𝑥 ↔ ( 𝑢 ‘ 𝐺 ) = 𝑦 ) ) |
| 50 |
49
|
3anbi3d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ↔ ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑦 ) ) ) |
| 51 |
50
|
rexbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ↔ ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑦 ) ) ) |
| 52 |
|
dmeq |
⊢ ( 𝑢 = 𝑝 → dom 𝑢 = dom 𝑝 ) |
| 53 |
52
|
eleq2d |
⊢ ( 𝑢 = 𝑝 → ( 𝐺 ∈ dom 𝑢 ↔ 𝐺 ∈ dom 𝑝 ) ) |
| 54 |
|
breq2 |
⊢ ( 𝑢 = 𝑝 → ( 𝑣 <s 𝑢 ↔ 𝑣 <s 𝑝 ) ) |
| 55 |
54
|
notbid |
⊢ ( 𝑢 = 𝑝 → ( ¬ 𝑣 <s 𝑢 ↔ ¬ 𝑣 <s 𝑝 ) ) |
| 56 |
|
reseq1 |
⊢ ( 𝑢 = 𝑝 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑝 ↾ suc 𝐺 ) ) |
| 57 |
56
|
eqeq1d |
⊢ ( 𝑢 = 𝑝 → ( ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ↔ ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) |
| 58 |
55 57
|
imbi12d |
⊢ ( 𝑢 = 𝑝 → ( ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ↔ ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
| 59 |
58
|
ralbidv |
⊢ ( 𝑢 = 𝑝 → ( ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ↔ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ) ) |
| 60 |
|
fveq1 |
⊢ ( 𝑢 = 𝑝 → ( 𝑢 ‘ 𝐺 ) = ( 𝑝 ‘ 𝐺 ) ) |
| 61 |
60
|
eqeq1d |
⊢ ( 𝑢 = 𝑝 → ( ( 𝑢 ‘ 𝐺 ) = 𝑦 ↔ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) |
| 62 |
53 59 61
|
3anbi123d |
⊢ ( 𝑢 = 𝑝 → ( ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑦 ) ↔ ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) |
| 63 |
62
|
cbvrexvw |
⊢ ( ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑦 ) ↔ ∃ 𝑝 ∈ 𝐴 ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) |
| 64 |
51 63
|
bitrdi |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ↔ ∃ 𝑝 ∈ 𝐴 ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) ) |
| 65 |
64
|
mo4 |
⊢ ( ∃* 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ∧ ∃ 𝑝 ∈ 𝐴 ( 𝐺 ∈ dom 𝑝 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑝 → ( 𝑝 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑝 ‘ 𝐺 ) = 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
| 66 |
48 65
|
sylibr |
⊢ ( 𝐴 ⊆ No → ∃* 𝑥 ∃ 𝑢 ∈ 𝐴 ( 𝐺 ∈ dom 𝑢 ∧ ∀ 𝑣 ∈ 𝐴 ( ¬ 𝑣 <s 𝑢 → ( 𝑢 ↾ suc 𝐺 ) = ( 𝑣 ↾ suc 𝐺 ) ) ∧ ( 𝑢 ‘ 𝐺 ) = 𝑥 ) ) |