Metamath Proof Explorer


Theorem notab

Description: A class abstraction defined by a negation. (Contributed by FL, 18-Sep-2010)

Ref Expression
Assertion notab { 𝑥 ∣ ¬ 𝜑 } = ( V ∖ { 𝑥𝜑 } )

Proof

Step Hyp Ref Expression
1 df-rab { 𝑥 ∈ V ∣ ¬ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝜑 ) }
2 rabab { 𝑥 ∈ V ∣ ¬ 𝜑 } = { 𝑥 ∣ ¬ 𝜑 }
3 1 2 eqtr3i { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝜑 ) } = { 𝑥 ∣ ¬ 𝜑 }
4 difab ( { 𝑥𝑥 ∈ V } ∖ { 𝑥𝜑 } ) = { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝜑 ) }
5 abid2 { 𝑥𝑥 ∈ V } = V
6 5 difeq1i ( { 𝑥𝑥 ∈ V } ∖ { 𝑥𝜑 } ) = ( V ∖ { 𝑥𝜑 } )
7 4 6 eqtr3i { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝜑 ) } = ( V ∖ { 𝑥𝜑 } )
8 3 7 eqtr3i { 𝑥 ∣ ¬ 𝜑 } = ( V ∖ { 𝑥𝜑 } )