Description: A class abstraction defined by a negation. (Contributed by FL, 18-Sep-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | notab | ⊢ { 𝑥 ∣ ¬ 𝜑 } = ( V ∖ { 𝑥 ∣ 𝜑 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑥 ∈ V ∣ ¬ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝜑 ) } | |
| 2 | rabab | ⊢ { 𝑥 ∈ V ∣ ¬ 𝜑 } = { 𝑥 ∣ ¬ 𝜑 } | |
| 3 | 1 2 | eqtr3i | ⊢ { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝜑 ) } = { 𝑥 ∣ ¬ 𝜑 } |
| 4 | difab | ⊢ ( { 𝑥 ∣ 𝑥 ∈ V } ∖ { 𝑥 ∣ 𝜑 } ) = { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝜑 ) } | |
| 5 | abid2 | ⊢ { 𝑥 ∣ 𝑥 ∈ V } = V | |
| 6 | 5 | difeq1i | ⊢ ( { 𝑥 ∣ 𝑥 ∈ V } ∖ { 𝑥 ∣ 𝜑 } ) = ( V ∖ { 𝑥 ∣ 𝜑 } ) |
| 7 | 4 6 | eqtr3i | ⊢ { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝜑 ) } = ( V ∖ { 𝑥 ∣ 𝜑 } ) |
| 8 | 3 7 | eqtr3i | ⊢ { 𝑥 ∣ ¬ 𝜑 } = ( V ∖ { 𝑥 ∣ 𝜑 } ) |