Metamath Proof Explorer


Theorem notabw

Description: A class abstraction defined by a negation. Version of notab using implicit substitution, which does not require ax-10 , ax-12 . (Contributed by Gino Giotto, 15-Oct-2024)

Ref Expression
Hypothesis notabw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion notabw { 𝑥 ∣ ¬ 𝜑 } = ( V ∖ { 𝑦𝜓 } )

Proof

Step Hyp Ref Expression
1 notabw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 vex 𝑥 ∈ V
3 2 biantrur ( ¬ 𝑥 ∈ { 𝑦𝜓 } ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ { 𝑦𝜓 } ) )
4 df-clab ( 𝑥 ∈ { 𝑦𝜓 } ↔ [ 𝑥 / 𝑦 ] 𝜓 )
5 1 bicomd ( 𝑥 = 𝑦 → ( 𝜓𝜑 ) )
6 5 equcoms ( 𝑦 = 𝑥 → ( 𝜓𝜑 ) )
7 6 sbievw ( [ 𝑥 / 𝑦 ] 𝜓𝜑 )
8 4 7 bitri ( 𝑥 ∈ { 𝑦𝜓 } ↔ 𝜑 )
9 3 8 xchnxbi ( ¬ 𝜑 ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ { 𝑦𝜓 } ) )
10 9 abbii { 𝑥 ∣ ¬ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ { 𝑦𝜓 } ) }
11 df-dif ( V ∖ { 𝑦𝜓 } ) = { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ { 𝑦𝜓 } ) }
12 10 11 eqtr4i { 𝑥 ∣ ¬ 𝜑 } = ( V ∖ { 𝑦𝜓 } )