Step |
Hyp |
Ref |
Expression |
1 |
|
notabw.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
vex |
⊢ 𝑥 ∈ V |
3 |
2
|
biantrur |
⊢ ( ¬ 𝑥 ∈ { 𝑦 ∣ 𝜓 } ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ { 𝑦 ∣ 𝜓 } ) ) |
4 |
|
df-clab |
⊢ ( 𝑥 ∈ { 𝑦 ∣ 𝜓 } ↔ [ 𝑥 / 𝑦 ] 𝜓 ) |
5 |
1
|
bicomd |
⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜑 ) ) |
6 |
5
|
equcoms |
⊢ ( 𝑦 = 𝑥 → ( 𝜓 ↔ 𝜑 ) ) |
7 |
6
|
sbievw |
⊢ ( [ 𝑥 / 𝑦 ] 𝜓 ↔ 𝜑 ) |
8 |
4 7
|
bitri |
⊢ ( 𝑥 ∈ { 𝑦 ∣ 𝜓 } ↔ 𝜑 ) |
9 |
3 8
|
xchnxbi |
⊢ ( ¬ 𝜑 ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ { 𝑦 ∣ 𝜓 } ) ) |
10 |
9
|
abbii |
⊢ { 𝑥 ∣ ¬ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ { 𝑦 ∣ 𝜓 } ) } |
11 |
|
df-dif |
⊢ ( V ∖ { 𝑦 ∣ 𝜓 } ) = { 𝑥 ∣ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ { 𝑦 ∣ 𝜓 } ) } |
12 |
10 11
|
eqtr4i |
⊢ { 𝑥 ∣ ¬ 𝜑 } = ( V ∖ { 𝑦 ∣ 𝜓 } ) |