Metamath Proof Explorer


Theorem notbi

Description: Contraposition. Theorem *4.11 of WhiteheadRussell p. 117. (Contributed by NM, 21-May-1994) (Proof shortened by Wolf Lammen, 12-Jun-2013)

Ref Expression
Assertion notbi ( ( 𝜑𝜓 ) ↔ ( ¬ 𝜑 ↔ ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 id ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) )
2 1 notbid ( ( 𝜑𝜓 ) → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
3 id ( ( ¬ 𝜑 ↔ ¬ 𝜓 ) → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
4 3 con4bid ( ( ¬ 𝜑 ↔ ¬ 𝜓 ) → ( 𝜑𝜓 ) )
5 2 4 impbii ( ( 𝜑𝜓 ) ↔ ( ¬ 𝜑 ↔ ¬ 𝜓 ) )