Description: Contraposition. Theorem *4.11 of WhiteheadRussell p. 117. (Contributed by NM, 21-May-1994) (Proof shortened by Wolf Lammen, 12-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | notbi | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | 1 | notbid | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
| 3 | id | ⊢ ( ( ¬ 𝜑 ↔ ¬ 𝜓 ) → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) | |
| 4 | 3 | con4bid | ⊢ ( ( ¬ 𝜑 ↔ ¬ 𝜓 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 5 | 2 4 | impbii | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |