Description: Negate both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993) (Proof shortened by Wolf Lammen, 19-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | notbii.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| Assertion | notbii | ⊢ ( ¬ 𝜑 ↔ ¬ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notbii.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | notbi | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) | |
| 3 | 1 2 | mpbi | ⊢ ( ¬ 𝜑 ↔ ¬ 𝜓 ) |