Metamath Proof Explorer


Theorem notnotb

Description: Double negation. Theorem *4.13 of WhiteheadRussell p. 117. (Contributed by NM, 3-Jan-1993)

Ref Expression
Assertion notnotb ( 𝜑 ↔ ¬ ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 notnot ( 𝜑 → ¬ ¬ 𝜑 )
2 notnotr ( ¬ ¬ 𝜑𝜑 )
3 1 2 impbii ( 𝜑 ↔ ¬ ¬ 𝜑 )