Metamath Proof Explorer


Theorem notnotrALT

Description: Converse of double negation. Alternate proof of notnotr . This proof is notnotrALTVD automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion notnotrALT ( ¬ ¬ 𝜑𝜑 )

Proof

Step Hyp Ref Expression
1 id ( ¬ ¬ 𝜑 → ¬ ¬ 𝜑 )
2 pm2.21 ( ¬ ¬ 𝜑 → ( ¬ 𝜑 → ¬ ¬ ¬ 𝜑 ) )
3 1 2 mt4d ( ¬ ¬ 𝜑𝜑 )