| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difab | ⊢ ( { 𝑥  ∣  𝑥  ∈  𝐴 }  ∖  { 𝑥  ∣  𝜑 } )  =  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  ¬  𝜑 ) } | 
						
							| 2 |  | difin | ⊢ ( 𝐴  ∖  ( 𝐴  ∩  { 𝑥  ∣  𝜑 } ) )  =  ( 𝐴  ∖  { 𝑥  ∣  𝜑 } ) | 
						
							| 3 |  | dfrab3 | ⊢ { 𝑥  ∈  𝐴  ∣  𝜑 }  =  ( 𝐴  ∩  { 𝑥  ∣  𝜑 } ) | 
						
							| 4 | 3 | difeq2i | ⊢ ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  𝜑 } )  =  ( 𝐴  ∖  ( 𝐴  ∩  { 𝑥  ∣  𝜑 } ) ) | 
						
							| 5 |  | abid2 | ⊢ { 𝑥  ∣  𝑥  ∈  𝐴 }  =  𝐴 | 
						
							| 6 | 5 | difeq1i | ⊢ ( { 𝑥  ∣  𝑥  ∈  𝐴 }  ∖  { 𝑥  ∣  𝜑 } )  =  ( 𝐴  ∖  { 𝑥  ∣  𝜑 } ) | 
						
							| 7 | 2 4 6 | 3eqtr4i | ⊢ ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  𝜑 } )  =  ( { 𝑥  ∣  𝑥  ∈  𝐴 }  ∖  { 𝑥  ∣  𝜑 } ) | 
						
							| 8 |  | df-rab | ⊢ { 𝑥  ∈  𝐴  ∣  ¬  𝜑 }  =  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  ¬  𝜑 ) } | 
						
							| 9 | 1 7 8 | 3eqtr4i | ⊢ ( 𝐴  ∖  { 𝑥  ∈  𝐴  ∣  𝜑 } )  =  { 𝑥  ∈  𝐴  ∣  ¬  𝜑 } |