Metamath Proof Explorer


Theorem nottru

Description: A -. identity. (Contributed by Anthony Hart, 22-Oct-2010)

Ref Expression
Assertion nottru ( ¬ ⊤ ↔ ⊥ )

Proof

Step Hyp Ref Expression
1 df-fal ( ⊥ ↔ ¬ ⊤ )
2 1 bicomi ( ¬ ⊤ ↔ ⊥ )