| Step |
Hyp |
Ref |
Expression |
| 1 |
|
notzfaus.1 |
⊢ 𝐴 = { ∅ } |
| 2 |
|
notzfaus.2 |
⊢ ( 𝜑 ↔ ¬ 𝑥 ∈ 𝑦 ) |
| 3 |
|
0ex |
⊢ ∅ ∈ V |
| 4 |
3
|
snnz |
⊢ { ∅ } ≠ ∅ |
| 5 |
1 4
|
eqnetri |
⊢ 𝐴 ≠ ∅ |
| 6 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 7 |
5 6
|
mpbi |
⊢ ∃ 𝑥 𝑥 ∈ 𝐴 |
| 8 |
|
pm5.19 |
⊢ ¬ ( 𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑦 ) |
| 9 |
|
ibar |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 10 |
9 2
|
bitr3di |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ¬ 𝑥 ∈ 𝑦 ) ) |
| 11 |
10
|
bibi2d |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝑦 ↔ ¬ 𝑥 ∈ 𝑦 ) ) ) |
| 12 |
8 11
|
mtbiri |
⊢ ( 𝑥 ∈ 𝐴 → ¬ ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 13 |
7 12
|
eximii |
⊢ ∃ 𝑥 ¬ ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 14 |
|
exnal |
⊢ ( ∃ 𝑥 ¬ ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 15 |
13 14
|
mpbi |
⊢ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 16 |
15
|
nex |
⊢ ¬ ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |