Metamath Proof Explorer


Theorem npcan

Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion npcan ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴𝐵 ) + 𝐵 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 subcl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝐵 ) ∈ ℂ )
2 simpr ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ )
3 1 2 addcomd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴𝐵 ) + 𝐵 ) = ( 𝐵 + ( 𝐴𝐵 ) ) )
4 pncan3 ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 + ( 𝐴𝐵 ) ) = 𝐴 )
5 4 ancoms ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 + ( 𝐴𝐵 ) ) = 𝐴 )
6 3 5 eqtrd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴𝐵 ) + 𝐵 ) = 𝐴 )