Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 4-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | npcans | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐴 -s 𝐵 ) +s 𝐵 ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subscl | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 -s 𝐵 ) ∈ No ) | |
2 | simpr | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐵 ∈ No ) | |
3 | 1 2 | addscomd | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐴 -s 𝐵 ) +s 𝐵 ) = ( 𝐵 +s ( 𝐴 -s 𝐵 ) ) ) |
4 | pncan3s | ⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ) → ( 𝐵 +s ( 𝐴 -s 𝐵 ) ) = 𝐴 ) | |
5 | 4 | ancoms | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐵 +s ( 𝐴 -s 𝐵 ) ) = 𝐴 ) |
6 | 3 5 | eqtrd | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐴 -s 𝐵 ) +s 𝐵 ) = 𝐴 ) |