Metamath Proof Explorer


Theorem npex

Description: The class of positive reals is a set. (Contributed by NM, 31-Oct-1995) (New usage is discouraged.)

Ref Expression
Assertion npex P ∈ V

Proof

Step Hyp Ref Expression
1 nqex Q ∈ V
2 1 pwex 𝒫 Q ∈ V
3 pssss ( 𝑥Q𝑥Q )
4 3 ad2antlr ( ( ( ∅ ⊊ 𝑥𝑥Q ) ∧ ∀ 𝑦𝑥 ( ∀ 𝑧 ( 𝑧 <Q 𝑦𝑧𝑥 ) ∧ ∃ 𝑧𝑥 𝑦 <Q 𝑧 ) ) → 𝑥Q )
5 4 ss2abi { 𝑥 ∣ ( ( ∅ ⊊ 𝑥𝑥Q ) ∧ ∀ 𝑦𝑥 ( ∀ 𝑧 ( 𝑧 <Q 𝑦𝑧𝑥 ) ∧ ∃ 𝑧𝑥 𝑦 <Q 𝑧 ) ) } ⊆ { 𝑥𝑥Q }
6 df-np P = { 𝑥 ∣ ( ( ∅ ⊊ 𝑥𝑥Q ) ∧ ∀ 𝑦𝑥 ( ∀ 𝑧 ( 𝑧 <Q 𝑦𝑧𝑥 ) ∧ ∃ 𝑧𝑥 𝑦 <Q 𝑧 ) ) }
7 df-pw 𝒫 Q = { 𝑥𝑥Q }
8 5 6 7 3sstr4i P ⊆ 𝒫 Q
9 2 8 ssexi P ∈ V