Description: The class of positive reals is a set. (Contributed by NM, 31-Oct-1995) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | npex | ⊢ P ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqex | ⊢ Q ∈ V | |
2 | 1 | pwex | ⊢ 𝒫 Q ∈ V |
3 | pssss | ⊢ ( 𝑥 ⊊ Q → 𝑥 ⊆ Q ) | |
4 | 3 | ad2antlr | ⊢ ( ( ( ∅ ⊊ 𝑥 ∧ 𝑥 ⊊ Q ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∀ 𝑧 ( 𝑧 <Q 𝑦 → 𝑧 ∈ 𝑥 ) ∧ ∃ 𝑧 ∈ 𝑥 𝑦 <Q 𝑧 ) ) → 𝑥 ⊆ Q ) |
5 | 4 | ss2abi | ⊢ { 𝑥 ∣ ( ( ∅ ⊊ 𝑥 ∧ 𝑥 ⊊ Q ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∀ 𝑧 ( 𝑧 <Q 𝑦 → 𝑧 ∈ 𝑥 ) ∧ ∃ 𝑧 ∈ 𝑥 𝑦 <Q 𝑧 ) ) } ⊆ { 𝑥 ∣ 𝑥 ⊆ Q } |
6 | df-np | ⊢ P = { 𝑥 ∣ ( ( ∅ ⊊ 𝑥 ∧ 𝑥 ⊊ Q ) ∧ ∀ 𝑦 ∈ 𝑥 ( ∀ 𝑧 ( 𝑧 <Q 𝑦 → 𝑧 ∈ 𝑥 ) ∧ ∃ 𝑧 ∈ 𝑥 𝑦 <Q 𝑧 ) ) } | |
7 | df-pw | ⊢ 𝒫 Q = { 𝑥 ∣ 𝑥 ⊆ Q } | |
8 | 5 6 7 | 3sstr4i | ⊢ P ⊆ 𝒫 Q |
9 | 2 8 | ssexi | ⊢ P ∈ V |