Metamath Proof Explorer


Theorem npncan2

Description: Cancellation law for subtraction. (Contributed by Scott Fenton, 21-Jun-2013)

Ref Expression
Assertion npncan2 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴𝐵 ) + ( 𝐵𝐴 ) ) = 0 )

Proof

Step Hyp Ref Expression
1 npncan ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴𝐵 ) + ( 𝐵𝐴 ) ) = ( 𝐴𝐴 ) )
2 1 3anidm13 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴𝐵 ) + ( 𝐵𝐴 ) ) = ( 𝐴𝐴 ) )
3 subid ( 𝐴 ∈ ℂ → ( 𝐴𝐴 ) = 0 )
4 3 adantr ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴𝐴 ) = 0 )
5 2 4 eqtrd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴𝐵 ) + ( 𝐵𝐴 ) ) = 0 )