Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelz |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℤ ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐴 ∈ ℤ ) |
3 |
2
|
zred |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐴 ∈ ℝ ) |
4 |
|
eluz2gt1 |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝐵 ) |
5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 1 < 𝐵 ) |
6 |
|
eluzelz |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ∈ ℤ ) |
7 |
6
|
adantl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐵 ∈ ℤ ) |
8 |
7
|
zred |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐵 ∈ ℝ ) |
9 |
|
eluz2nn |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℕ ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐴 ∈ ℕ ) |
11 |
10
|
nngt0d |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 0 < 𝐴 ) |
12 |
|
ltmulgt11 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < 𝐵 ↔ 𝐴 < ( 𝐴 · 𝐵 ) ) ) |
13 |
3 8 11 12
|
syl3anc |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ( 1 < 𝐵 ↔ 𝐴 < ( 𝐴 · 𝐵 ) ) ) |
14 |
5 13
|
mpbid |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐴 < ( 𝐴 · 𝐵 ) ) |
15 |
3 14
|
ltned |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐴 ≠ ( 𝐴 · 𝐵 ) ) |
16 |
|
dvdsmul1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∥ ( 𝐴 · 𝐵 ) ) |
17 |
1 6 16
|
syl2an |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐴 ∥ ( 𝐴 · 𝐵 ) ) |
18 |
|
isprm4 |
⊢ ( ( 𝐴 · 𝐵 ) ∈ ℙ ↔ ( ( 𝐴 · 𝐵 ) ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( 𝑥 ∥ ( 𝐴 · 𝐵 ) → 𝑥 = ( 𝐴 · 𝐵 ) ) ) ) |
19 |
18
|
simprbi |
⊢ ( ( 𝐴 · 𝐵 ) ∈ ℙ → ∀ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( 𝑥 ∥ ( 𝐴 · 𝐵 ) → 𝑥 = ( 𝐴 · 𝐵 ) ) ) |
20 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∥ ( 𝐴 · 𝐵 ) ↔ 𝐴 ∥ ( 𝐴 · 𝐵 ) ) ) |
21 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = ( 𝐴 · 𝐵 ) ↔ 𝐴 = ( 𝐴 · 𝐵 ) ) ) |
22 |
20 21
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∥ ( 𝐴 · 𝐵 ) → 𝑥 = ( 𝐴 · 𝐵 ) ) ↔ ( 𝐴 ∥ ( 𝐴 · 𝐵 ) → 𝐴 = ( 𝐴 · 𝐵 ) ) ) ) |
23 |
22
|
rspcv |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ( 𝑥 ∥ ( 𝐴 · 𝐵 ) → 𝑥 = ( 𝐴 · 𝐵 ) ) → ( 𝐴 ∥ ( 𝐴 · 𝐵 ) → 𝐴 = ( 𝐴 · 𝐵 ) ) ) ) |
24 |
19 23
|
syl5 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 · 𝐵 ) ∈ ℙ → ( 𝐴 ∥ ( 𝐴 · 𝐵 ) → 𝐴 = ( 𝐴 · 𝐵 ) ) ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝐴 · 𝐵 ) ∈ ℙ → ( 𝐴 ∥ ( 𝐴 · 𝐵 ) → 𝐴 = ( 𝐴 · 𝐵 ) ) ) ) |
26 |
17 25
|
mpid |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝐴 · 𝐵 ) ∈ ℙ → 𝐴 = ( 𝐴 · 𝐵 ) ) ) |
27 |
26
|
necon3ad |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐴 ≠ ( 𝐴 · 𝐵 ) → ¬ ( 𝐴 · 𝐵 ) ∈ ℙ ) ) |
28 |
15 27
|
mpd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ¬ ( 𝐴 · 𝐵 ) ∈ ℙ ) |