Metamath Proof Explorer


Theorem nprmdvds1

Description: No prime number divides 1. (Contributed by Paul Chapman, 17-Nov-2012) (Proof shortened by Mario Carneiro, 2-Jul-2015)

Ref Expression
Assertion nprmdvds1 ( 𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1 )

Proof

Step Hyp Ref Expression
1 1nprm ¬ 1 ∈ ℙ
2 prmnn ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ )
3 2 nnnn0d ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ0 )
4 dvds1 ( 𝑃 ∈ ℕ0 → ( 𝑃 ∥ 1 ↔ 𝑃 = 1 ) )
5 3 4 syl ( 𝑃 ∈ ℙ → ( 𝑃 ∥ 1 ↔ 𝑃 = 1 ) )
6 eleq1 ( 𝑃 = 1 → ( 𝑃 ∈ ℙ ↔ 1 ∈ ℙ ) )
7 6 biimpcd ( 𝑃 ∈ ℙ → ( 𝑃 = 1 → 1 ∈ ℙ ) )
8 5 7 sylbid ( 𝑃 ∈ ℙ → ( 𝑃 ∥ 1 → 1 ∈ ℙ ) )
9 1 8 mtoi ( 𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1 )