Description: An inference for compositeness. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nprmi.1 | ⊢ 𝐴 ∈ ℕ | |
| nprmi.2 | ⊢ 𝐵 ∈ ℕ | ||
| nprmi.3 | ⊢ 1 < 𝐴 | ||
| nprmi.4 | ⊢ 1 < 𝐵 | ||
| nprmi.5 | ⊢ ( 𝐴 · 𝐵 ) = 𝑁 | ||
| Assertion | nprmi | ⊢ ¬ 𝑁 ∈ ℙ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nprmi.1 | ⊢ 𝐴 ∈ ℕ | |
| 2 | nprmi.2 | ⊢ 𝐵 ∈ ℕ | |
| 3 | nprmi.3 | ⊢ 1 < 𝐴 | |
| 4 | nprmi.4 | ⊢ 1 < 𝐵 | |
| 5 | nprmi.5 | ⊢ ( 𝐴 · 𝐵 ) = 𝑁 | |
| 6 | eluz2b2 | ⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐴 ∈ ℕ ∧ 1 < 𝐴 ) ) | |
| 7 | eluz2b2 | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐵 ∈ ℕ ∧ 1 < 𝐵 ) ) | |
| 8 | nprm | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ¬ ( 𝐴 · 𝐵 ) ∈ ℙ ) | |
| 9 | 6 7 8 | syl2anbr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℕ ∧ 1 < 𝐵 ) ) → ¬ ( 𝐴 · 𝐵 ) ∈ ℙ ) | 
| 10 | 1 3 2 4 9 | mp4an | ⊢ ¬ ( 𝐴 · 𝐵 ) ∈ ℙ | 
| 11 | 5 | eleq1i | ⊢ ( ( 𝐴 · 𝐵 ) ∈ ℙ ↔ 𝑁 ∈ ℙ ) | 
| 12 | 10 11 | mtbi | ⊢ ¬ 𝑁 ∈ ℙ |