Description: An inference for compositeness. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nprmi.1 | ⊢ 𝐴 ∈ ℕ | |
nprmi.2 | ⊢ 𝐵 ∈ ℕ | ||
nprmi.3 | ⊢ 1 < 𝐴 | ||
nprmi.4 | ⊢ 1 < 𝐵 | ||
nprmi.5 | ⊢ ( 𝐴 · 𝐵 ) = 𝑁 | ||
Assertion | nprmi | ⊢ ¬ 𝑁 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nprmi.1 | ⊢ 𝐴 ∈ ℕ | |
2 | nprmi.2 | ⊢ 𝐵 ∈ ℕ | |
3 | nprmi.3 | ⊢ 1 < 𝐴 | |
4 | nprmi.4 | ⊢ 1 < 𝐵 | |
5 | nprmi.5 | ⊢ ( 𝐴 · 𝐵 ) = 𝑁 | |
6 | eluz2b2 | ⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐴 ∈ ℕ ∧ 1 < 𝐴 ) ) | |
7 | eluz2b2 | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐵 ∈ ℕ ∧ 1 < 𝐵 ) ) | |
8 | nprm | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ¬ ( 𝐴 · 𝐵 ) ∈ ℙ ) | |
9 | 6 7 8 | syl2anbr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 1 < 𝐴 ) ∧ ( 𝐵 ∈ ℕ ∧ 1 < 𝐵 ) ) → ¬ ( 𝐴 · 𝐵 ) ∈ ℙ ) |
10 | 1 3 2 4 9 | mp4an | ⊢ ¬ ( 𝐴 · 𝐵 ) ∈ ℙ |
11 | 5 | eleq1i | ⊢ ( ( 𝐴 · 𝐵 ) ∈ ℙ ↔ 𝑁 ∈ ℙ ) |
12 | 10 11 | mtbi | ⊢ ¬ 𝑁 ∈ ℙ |