Metamath Proof Explorer


Theorem nprrel

Description: No proper class is related to anything via any relation. (Contributed by Roy F. Longton, 30-Jul-2005)

Ref Expression
Hypotheses nprrel12.1 Rel 𝑅
nprrel.2 ¬ 𝐴 ∈ V
Assertion nprrel ¬ 𝐴 𝑅 𝐵

Proof

Step Hyp Ref Expression
1 nprrel12.1 Rel 𝑅
2 nprrel.2 ¬ 𝐴 ∈ V
3 1 brrelex1i ( 𝐴 𝑅 𝐵𝐴 ∈ V )
4 2 3 mto ¬ 𝐴 𝑅 𝐵