Metamath Proof Explorer


Theorem nprrel12

Description: Proper classes are not related via any relation. (Contributed by AV, 29-Oct-2021)

Ref Expression
Hypothesis nprrel12.1 Rel 𝑅
Assertion nprrel12 ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ¬ 𝐴 𝑅 𝐵 )

Proof

Step Hyp Ref Expression
1 nprrel12.1 Rel 𝑅
2 1 brrelex12i ( 𝐴 𝑅 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
3 2 con3i ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ¬ 𝐴 𝑅 𝐵 )