Description: A class is not a proper subclass of another iff it satisfies a one-directional form of eqss . (Contributed by Mario Carneiro, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | npss | ⊢ ( ¬ 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 → 𝐴 = 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.61 | ⊢ ( ¬ ( 𝐴 ⊆ 𝐵 → 𝐴 = 𝐵 ) ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) ) | |
2 | dfpss2 | ⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) ) | |
3 | 1 2 | bitr4i | ⊢ ( ¬ ( 𝐴 ⊆ 𝐵 → 𝐴 = 𝐵 ) ↔ 𝐴 ⊊ 𝐵 ) |
4 | 3 | con1bii | ⊢ ( ¬ 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 → 𝐴 = 𝐵 ) ) |