Step |
Hyp |
Ref |
Expression |
1 |
|
elxp2 |
⊢ ( 𝐴 ∈ ( N × N ) ↔ ∃ 𝑎 ∈ N ∃ 𝑏 ∈ N 𝐴 = 〈 𝑎 , 𝑏 〉 ) |
2 |
|
pion |
⊢ ( 𝑏 ∈ N → 𝑏 ∈ On ) |
3 |
|
suceloni |
⊢ ( 𝑏 ∈ On → suc 𝑏 ∈ On ) |
4 |
2 3
|
syl |
⊢ ( 𝑏 ∈ N → suc 𝑏 ∈ On ) |
5 |
|
vex |
⊢ 𝑏 ∈ V |
6 |
5
|
sucid |
⊢ 𝑏 ∈ suc 𝑏 |
7 |
|
eleq2 |
⊢ ( 𝑦 = suc 𝑏 → ( 𝑏 ∈ 𝑦 ↔ 𝑏 ∈ suc 𝑏 ) ) |
8 |
7
|
rspcev |
⊢ ( ( suc 𝑏 ∈ On ∧ 𝑏 ∈ suc 𝑏 ) → ∃ 𝑦 ∈ On 𝑏 ∈ 𝑦 ) |
9 |
4 6 8
|
sylancl |
⊢ ( 𝑏 ∈ N → ∃ 𝑦 ∈ On 𝑏 ∈ 𝑦 ) |
10 |
9
|
adantl |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ∃ 𝑦 ∈ On 𝑏 ∈ 𝑦 ) |
11 |
|
elequ2 |
⊢ ( 𝑦 = 𝑚 → ( 𝑏 ∈ 𝑦 ↔ 𝑏 ∈ 𝑚 ) ) |
12 |
11
|
imbi1d |
⊢ ( 𝑦 = 𝑚 → ( ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ↔ ( 𝑏 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
13 |
12
|
2ralbidv |
⊢ ( 𝑦 = 𝑚 → ( ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ↔ ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
14 |
|
opeq1 |
⊢ ( 𝑐 = 𝑎 → 〈 𝑐 , 𝑑 〉 = 〈 𝑎 , 𝑑 〉 ) |
15 |
14
|
breq2d |
⊢ ( 𝑐 = 𝑎 → ( 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ↔ 𝑥 ~Q 〈 𝑎 , 𝑑 〉 ) ) |
16 |
15
|
rexbidv |
⊢ ( 𝑐 = 𝑎 → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ↔ ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑑 〉 ) ) |
17 |
16
|
imbi2d |
⊢ ( 𝑐 = 𝑎 → ( ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ↔ ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑑 〉 ) ) ) |
18 |
|
elequ1 |
⊢ ( 𝑑 = 𝑏 → ( 𝑑 ∈ 𝑚 ↔ 𝑏 ∈ 𝑚 ) ) |
19 |
|
opeq2 |
⊢ ( 𝑑 = 𝑏 → 〈 𝑎 , 𝑑 〉 = 〈 𝑎 , 𝑏 〉 ) |
20 |
19
|
breq2d |
⊢ ( 𝑑 = 𝑏 → ( 𝑥 ~Q 〈 𝑎 , 𝑑 〉 ↔ 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
21 |
20
|
rexbidv |
⊢ ( 𝑑 = 𝑏 → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑑 〉 ↔ ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
22 |
18 21
|
imbi12d |
⊢ ( 𝑑 = 𝑏 → ( ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑑 〉 ) ↔ ( 𝑏 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
23 |
17 22
|
cbvral2vw |
⊢ ( ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ↔ ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
24 |
23
|
ralbii |
⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ↔ ∀ 𝑚 ∈ 𝑦 ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
25 |
|
rexnal |
⊢ ( ∃ 𝑧 ∈ ( N × N ) ¬ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ↔ ¬ ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ) |
26 |
|
pm4.63 |
⊢ ( ¬ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ↔ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ) |
27 |
|
xp2nd |
⊢ ( 𝑧 ∈ ( N × N ) → ( 2nd ‘ 𝑧 ) ∈ N ) |
28 |
|
ltpiord |
⊢ ( ( ( 2nd ‘ 𝑧 ) ∈ N ∧ 𝑏 ∈ N ) → ( ( 2nd ‘ 𝑧 ) <N 𝑏 ↔ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) |
29 |
28
|
ancoms |
⊢ ( ( 𝑏 ∈ N ∧ ( 2nd ‘ 𝑧 ) ∈ N ) → ( ( 2nd ‘ 𝑧 ) <N 𝑏 ↔ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) |
30 |
27 29
|
sylan2 |
⊢ ( ( 𝑏 ∈ N ∧ 𝑧 ∈ ( N × N ) ) → ( ( 2nd ‘ 𝑧 ) <N 𝑏 ↔ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) |
31 |
30
|
adantll |
⊢ ( ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) ∧ 𝑧 ∈ ( N × N ) ) → ( ( 2nd ‘ 𝑧 ) <N 𝑏 ↔ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) |
32 |
31
|
anbi2d |
⊢ ( ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) ∧ 𝑧 ∈ ( N × N ) ) → ( ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ↔ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) ) |
33 |
26 32
|
syl5bb |
⊢ ( ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) ∧ 𝑧 ∈ ( N × N ) ) → ( ¬ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ↔ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) ) |
34 |
33
|
rexbidva |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( ∃ 𝑧 ∈ ( N × N ) ¬ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ↔ ∃ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) ) |
35 |
25 34
|
bitr3id |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( ¬ ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ↔ ∃ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) ) |
36 |
|
xp1st |
⊢ ( 𝑧 ∈ ( N × N ) → ( 1st ‘ 𝑧 ) ∈ N ) |
37 |
|
elequ2 |
⊢ ( 𝑚 = 𝑏 → ( 𝑑 ∈ 𝑚 ↔ 𝑑 ∈ 𝑏 ) ) |
38 |
37
|
imbi1d |
⊢ ( 𝑚 = 𝑏 → ( ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ↔ ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ) ) |
39 |
38
|
2ralbidv |
⊢ ( 𝑚 = 𝑏 → ( ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ↔ ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ) ) |
40 |
39
|
rspccv |
⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( 𝑏 ∈ 𝑦 → ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ) ) |
41 |
|
opeq1 |
⊢ ( 𝑐 = ( 1st ‘ 𝑧 ) → 〈 𝑐 , 𝑑 〉 = 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) |
42 |
41
|
breq2d |
⊢ ( 𝑐 = ( 1st ‘ 𝑧 ) → ( 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ↔ 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) ) |
43 |
42
|
rexbidv |
⊢ ( 𝑐 = ( 1st ‘ 𝑧 ) → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ↔ ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) ) |
44 |
43
|
imbi2d |
⊢ ( 𝑐 = ( 1st ‘ 𝑧 ) → ( ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ↔ ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) ) ) |
45 |
44
|
ralbidv |
⊢ ( 𝑐 = ( 1st ‘ 𝑧 ) → ( ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ↔ ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) ) ) |
46 |
45
|
rspccv |
⊢ ( ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( ( 1st ‘ 𝑧 ) ∈ N → ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) ) ) |
47 |
|
eleq1 |
⊢ ( 𝑑 = ( 2nd ‘ 𝑧 ) → ( 𝑑 ∈ 𝑏 ↔ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) |
48 |
|
opeq2 |
⊢ ( 𝑑 = ( 2nd ‘ 𝑧 ) → 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
49 |
48
|
breq2d |
⊢ ( 𝑑 = ( 2nd ‘ 𝑧 ) → ( 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ↔ 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
50 |
49
|
rexbidv |
⊢ ( 𝑑 = ( 2nd ‘ 𝑧 ) → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ↔ ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
51 |
47 50
|
imbi12d |
⊢ ( 𝑑 = ( 2nd ‘ 𝑧 ) → ( ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) ↔ ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) ) |
52 |
51
|
rspccv |
⊢ ( ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) → ( ( 2nd ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) ) |
53 |
46 52
|
syl6 |
⊢ ( ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( ( 1st ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) ) ) |
54 |
40 53
|
syl6 |
⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( 𝑏 ∈ 𝑦 → ( ( 1st ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) ) ) ) |
55 |
54
|
imp |
⊢ ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) → ( ( 1st ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) ) ) |
56 |
36 55
|
syl5 |
⊢ ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) → ( 𝑧 ∈ ( N × N ) → ( ( 2nd ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) ) ) |
57 |
27 56
|
mpdi |
⊢ ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) → ( 𝑧 ∈ ( N × N ) → ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) ) |
58 |
57
|
3imp |
⊢ ( ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) ∧ 𝑧 ∈ ( N × N ) ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
59 |
|
1st2nd2 |
⊢ ( 𝑧 ∈ ( N × N ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
60 |
59
|
breq2d |
⊢ ( 𝑧 ∈ ( N × N ) → ( 𝑥 ~Q 𝑧 ↔ 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
61 |
60
|
rexbidv |
⊢ ( 𝑧 ∈ ( N × N ) → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 𝑧 ↔ ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
62 |
61
|
3ad2ant2 |
⊢ ( ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) ∧ 𝑧 ∈ ( N × N ) ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 𝑧 ↔ ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
63 |
58 62
|
mpbird |
⊢ ( ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) ∧ 𝑧 ∈ ( N × N ) ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 𝑧 ) |
64 |
|
enqer |
⊢ ~Q Er ( N × N ) |
65 |
64
|
a1i |
⊢ ( ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ 𝑥 ~Q 𝑧 ) → ~Q Er ( N × N ) ) |
66 |
|
simpr |
⊢ ( ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ 𝑥 ~Q 𝑧 ) → 𝑥 ~Q 𝑧 ) |
67 |
|
simpl |
⊢ ( ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ 𝑥 ~Q 𝑧 ) → 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ) |
68 |
65 66 67
|
ertr4d |
⊢ ( ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ 𝑥 ~Q 𝑧 ) → 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) |
69 |
68
|
ex |
⊢ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ( 𝑥 ~Q 𝑧 → 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
70 |
69
|
reximdv |
⊢ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 𝑧 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
71 |
63 70
|
syl5com |
⊢ ( ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) ∧ 𝑧 ∈ ( N × N ) ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
72 |
71
|
3expia |
⊢ ( ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) ∧ 𝑧 ∈ ( N × N ) ) → ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
73 |
72
|
impcomd |
⊢ ( ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) ∧ 𝑧 ∈ ( N × N ) ) → ( ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
74 |
73
|
rexlimdva |
⊢ ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) → ( ∃ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
75 |
74
|
ex |
⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( 𝑏 ∈ 𝑦 → ( ∃ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
76 |
75
|
com3r |
⊢ ( ∃ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
77 |
35 76
|
syl6bi |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( ¬ ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) → ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) ) |
78 |
77
|
com13 |
⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( ¬ ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) → ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) ) |
79 |
|
mulcompi |
⊢ ( 𝑎 ·N 𝑏 ) = ( 𝑏 ·N 𝑎 ) |
80 |
|
enqbreq |
⊢ ( ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) ∧ ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) ) → ( 〈 𝑎 , 𝑏 〉 ~Q 〈 𝑎 , 𝑏 〉 ↔ ( 𝑎 ·N 𝑏 ) = ( 𝑏 ·N 𝑎 ) ) ) |
81 |
80
|
anidms |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( 〈 𝑎 , 𝑏 〉 ~Q 〈 𝑎 , 𝑏 〉 ↔ ( 𝑎 ·N 𝑏 ) = ( 𝑏 ·N 𝑎 ) ) ) |
82 |
79 81
|
mpbiri |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → 〈 𝑎 , 𝑏 〉 ~Q 〈 𝑎 , 𝑏 〉 ) |
83 |
|
opelxpi |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → 〈 𝑎 , 𝑏 〉 ∈ ( N × N ) ) |
84 |
|
breq1 |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( 𝑦 ~Q 𝑧 ↔ 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ) ) |
85 |
|
vex |
⊢ 𝑎 ∈ V |
86 |
85 5
|
op2ndd |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( 2nd ‘ 𝑦 ) = 𝑏 ) |
87 |
86
|
breq2d |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ↔ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ) |
88 |
87
|
notbid |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ↔ ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ) |
89 |
84 88
|
imbi12d |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ↔ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ) ) |
90 |
89
|
ralbidv |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ↔ ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ) ) |
91 |
|
df-nq |
⊢ Q = { 𝑦 ∈ ( N × N ) ∣ ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) } |
92 |
90 91
|
elrab2 |
⊢ ( 〈 𝑎 , 𝑏 〉 ∈ Q ↔ ( 〈 𝑎 , 𝑏 〉 ∈ ( N × N ) ∧ ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ) ) |
93 |
92
|
simplbi2 |
⊢ ( 〈 𝑎 , 𝑏 〉 ∈ ( N × N ) → ( ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) → 〈 𝑎 , 𝑏 〉 ∈ Q ) ) |
94 |
83 93
|
syl |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) → 〈 𝑎 , 𝑏 〉 ∈ Q ) ) |
95 |
|
breq1 |
⊢ ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ↔ 〈 𝑎 , 𝑏 〉 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
96 |
95
|
rspcev |
⊢ ( ( 〈 𝑎 , 𝑏 〉 ∈ Q ∧ 〈 𝑎 , 𝑏 〉 ~Q 〈 𝑎 , 𝑏 〉 ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) |
97 |
96
|
expcom |
⊢ ( 〈 𝑎 , 𝑏 〉 ~Q 〈 𝑎 , 𝑏 〉 → ( 〈 𝑎 , 𝑏 〉 ∈ Q → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
98 |
82 94 97
|
sylsyld |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
99 |
98
|
com12 |
⊢ ( ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) → ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
100 |
99
|
a1dd |
⊢ ( ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) → ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
101 |
78 100
|
pm2.61d2 |
⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
102 |
101
|
ralrimivv |
⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
103 |
24 102
|
sylbir |
⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) → ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
104 |
103
|
a1i |
⊢ ( 𝑦 ∈ On → ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) → ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
105 |
13 104
|
tfis2 |
⊢ ( 𝑦 ∈ On → ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
106 |
|
rsp |
⊢ ( ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) → ( 𝑎 ∈ N → ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
107 |
105 106
|
syl |
⊢ ( 𝑦 ∈ On → ( 𝑎 ∈ N → ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
108 |
|
rsp |
⊢ ( ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) → ( 𝑏 ∈ N → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
109 |
107 108
|
syl6 |
⊢ ( 𝑦 ∈ On → ( 𝑎 ∈ N → ( 𝑏 ∈ N → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) ) |
110 |
109
|
impd |
⊢ ( 𝑦 ∈ On → ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
111 |
110
|
com12 |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( 𝑦 ∈ On → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
112 |
111
|
rexlimdv |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( ∃ 𝑦 ∈ On 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
113 |
10 112
|
mpd |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) |
114 |
|
breq2 |
⊢ ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ( 𝑥 ~Q 𝐴 ↔ 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
115 |
114
|
rexbidv |
⊢ ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 𝐴 ↔ ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
116 |
113 115
|
syl5ibrcom |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ∃ 𝑥 ∈ Q 𝑥 ~Q 𝐴 ) ) |
117 |
116
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ N ∃ 𝑏 ∈ N 𝐴 = 〈 𝑎 , 𝑏 〉 → ∃ 𝑥 ∈ Q 𝑥 ~Q 𝐴 ) |
118 |
1 117
|
sylbi |
⊢ ( 𝐴 ∈ ( N × N ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 𝐴 ) |
119 |
|
breq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑥 ~Q 𝑎 ↔ 𝑥 ~Q 𝐴 ) ) |
120 |
|
breq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑦 ~Q 𝑎 ↔ 𝑦 ~Q 𝐴 ) ) |
121 |
119 120
|
anbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) ↔ ( 𝑥 ~Q 𝐴 ∧ 𝑦 ~Q 𝐴 ) ) ) |
122 |
121
|
imbi1d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑥 ~Q 𝐴 ∧ 𝑦 ~Q 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
123 |
122
|
2ralbidv |
⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑥 ∈ Q ∀ 𝑦 ∈ Q ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ Q ∀ 𝑦 ∈ Q ( ( 𝑥 ~Q 𝐴 ∧ 𝑦 ~Q 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
124 |
64
|
a1i |
⊢ ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → ~Q Er ( N × N ) ) |
125 |
|
simpl |
⊢ ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → 𝑥 ~Q 𝑎 ) |
126 |
|
simpr |
⊢ ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → 𝑦 ~Q 𝑎 ) |
127 |
124 125 126
|
ertr4d |
⊢ ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → 𝑥 ~Q 𝑦 ) |
128 |
|
mulcompi |
⊢ ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑥 ) ) = ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑥 ) ) |
129 |
|
elpqn |
⊢ ( 𝑦 ∈ Q → 𝑦 ∈ ( N × N ) ) |
130 |
|
breq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ~Q 𝑧 ↔ 𝑥 ~Q 𝑧 ) ) |
131 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 𝑥 ) ) |
132 |
131
|
breq2d |
⊢ ( 𝑦 = 𝑥 → ( ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ↔ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ) |
133 |
132
|
notbid |
⊢ ( 𝑦 = 𝑥 → ( ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ↔ ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ) |
134 |
130 133
|
imbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ↔ ( 𝑥 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
135 |
134
|
ralbidv |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ↔ ∀ 𝑧 ∈ ( N × N ) ( 𝑥 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
136 |
135 91
|
elrab2 |
⊢ ( 𝑥 ∈ Q ↔ ( 𝑥 ∈ ( N × N ) ∧ ∀ 𝑧 ∈ ( N × N ) ( 𝑥 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
137 |
136
|
simprbi |
⊢ ( 𝑥 ∈ Q → ∀ 𝑧 ∈ ( N × N ) ( 𝑥 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ) |
138 |
|
breq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 ~Q 𝑧 ↔ 𝑥 ~Q 𝑦 ) ) |
139 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 𝑦 ) ) |
140 |
139
|
breq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ↔ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) |
141 |
140
|
notbid |
⊢ ( 𝑧 = 𝑦 → ( ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ↔ ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) |
142 |
138 141
|
imbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑥 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ↔ ( 𝑥 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
143 |
142
|
rspcva |
⊢ ( ( 𝑦 ∈ ( N × N ) ∧ ∀ 𝑧 ∈ ( N × N ) ( 𝑥 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ) → ( 𝑥 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) |
144 |
129 137 143
|
syl2anr |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑥 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) |
145 |
144
|
imp |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) |
146 |
|
elpqn |
⊢ ( 𝑥 ∈ Q → 𝑥 ∈ ( N × N ) ) |
147 |
91
|
rabeq2i |
⊢ ( 𝑦 ∈ Q ↔ ( 𝑦 ∈ ( N × N ) ∧ ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ) ) |
148 |
147
|
simprbi |
⊢ ( 𝑦 ∈ Q → ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ) |
149 |
|
breq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑦 ~Q 𝑧 ↔ 𝑦 ~Q 𝑥 ) ) |
150 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 𝑥 ) ) |
151 |
150
|
breq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ↔ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ) ) |
152 |
151
|
notbid |
⊢ ( 𝑧 = 𝑥 → ( ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ↔ ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ) ) |
153 |
149 152
|
imbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ↔ ( 𝑦 ~Q 𝑥 → ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ) ) ) |
154 |
153
|
rspcva |
⊢ ( ( 𝑥 ∈ ( N × N ) ∧ ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ) → ( 𝑦 ~Q 𝑥 → ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ) ) |
155 |
146 148 154
|
syl2an |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑦 ~Q 𝑥 → ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ) ) |
156 |
64
|
a1i |
⊢ ( 𝑥 ~Q 𝑦 → ~Q Er ( N × N ) ) |
157 |
|
id |
⊢ ( 𝑥 ~Q 𝑦 → 𝑥 ~Q 𝑦 ) |
158 |
156 157
|
ersym |
⊢ ( 𝑥 ~Q 𝑦 → 𝑦 ~Q 𝑥 ) |
159 |
155 158
|
impel |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ) |
160 |
|
xp2nd |
⊢ ( 𝑥 ∈ ( N × N ) → ( 2nd ‘ 𝑥 ) ∈ N ) |
161 |
146 160
|
syl |
⊢ ( 𝑥 ∈ Q → ( 2nd ‘ 𝑥 ) ∈ N ) |
162 |
161
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( 2nd ‘ 𝑥 ) ∈ N ) |
163 |
|
xp2nd |
⊢ ( 𝑦 ∈ ( N × N ) → ( 2nd ‘ 𝑦 ) ∈ N ) |
164 |
129 163
|
syl |
⊢ ( 𝑦 ∈ Q → ( 2nd ‘ 𝑦 ) ∈ N ) |
165 |
164
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( 2nd ‘ 𝑦 ) ∈ N ) |
166 |
|
ltsopi |
⊢ <N Or N |
167 |
|
sotric |
⊢ ( ( <N Or N ∧ ( ( 2nd ‘ 𝑥 ) ∈ N ∧ ( 2nd ‘ 𝑦 ) ∈ N ) ) → ( ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ↔ ¬ ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
168 |
166 167
|
mpan |
⊢ ( ( ( 2nd ‘ 𝑥 ) ∈ N ∧ ( 2nd ‘ 𝑦 ) ∈ N ) → ( ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ↔ ¬ ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
169 |
168
|
notbid |
⊢ ( ( ( 2nd ‘ 𝑥 ) ∈ N ∧ ( 2nd ‘ 𝑦 ) ∈ N ) → ( ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ↔ ¬ ¬ ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
170 |
|
notnotb |
⊢ ( ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ↔ ¬ ¬ ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) |
171 |
169 170
|
bitr4di |
⊢ ( ( ( 2nd ‘ 𝑥 ) ∈ N ∧ ( 2nd ‘ 𝑦 ) ∈ N ) → ( ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ↔ ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
172 |
162 165 171
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ↔ ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
173 |
159 172
|
mpbid |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) |
174 |
173
|
ord |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ¬ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) → ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) |
175 |
145 174
|
mt3d |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) |
176 |
175
|
oveq2d |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑥 ) ) = ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) ) |
177 |
128 176
|
eqtrid |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑥 ) ) = ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) ) |
178 |
|
1st2nd2 |
⊢ ( 𝑥 ∈ ( N × N ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) |
179 |
|
1st2nd2 |
⊢ ( 𝑦 ∈ ( N × N ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
180 |
178 179
|
breqan12d |
⊢ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) → ( 𝑥 ~Q 𝑦 ↔ 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ~Q 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) ) |
181 |
|
xp1st |
⊢ ( 𝑥 ∈ ( N × N ) → ( 1st ‘ 𝑥 ) ∈ N ) |
182 |
181 160
|
jca |
⊢ ( 𝑥 ∈ ( N × N ) → ( ( 1st ‘ 𝑥 ) ∈ N ∧ ( 2nd ‘ 𝑥 ) ∈ N ) ) |
183 |
|
xp1st |
⊢ ( 𝑦 ∈ ( N × N ) → ( 1st ‘ 𝑦 ) ∈ N ) |
184 |
183 163
|
jca |
⊢ ( 𝑦 ∈ ( N × N ) → ( ( 1st ‘ 𝑦 ) ∈ N ∧ ( 2nd ‘ 𝑦 ) ∈ N ) ) |
185 |
|
enqbreq |
⊢ ( ( ( ( 1st ‘ 𝑥 ) ∈ N ∧ ( 2nd ‘ 𝑥 ) ∈ N ) ∧ ( ( 1st ‘ 𝑦 ) ∈ N ∧ ( 2nd ‘ 𝑦 ) ∈ N ) ) → ( 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ~Q 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ↔ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ) ) |
186 |
182 184 185
|
syl2an |
⊢ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) → ( 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ~Q 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ↔ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ) ) |
187 |
180 186
|
bitrd |
⊢ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) → ( 𝑥 ~Q 𝑦 ↔ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ) ) |
188 |
146 129 187
|
syl2an |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑥 ~Q 𝑦 ↔ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ) ) |
189 |
188
|
biimpa |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ) |
190 |
177 189
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑥 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ) |
191 |
146
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → 𝑥 ∈ ( N × N ) ) |
192 |
|
mulcanpi |
⊢ ( ( ( 2nd ‘ 𝑥 ) ∈ N ∧ ( 1st ‘ 𝑥 ) ∈ N ) → ( ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑥 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ↔ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ) |
193 |
160 181 192
|
syl2anc |
⊢ ( 𝑥 ∈ ( N × N ) → ( ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑥 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ↔ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ) |
194 |
191 193
|
syl |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑥 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ↔ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ) |
195 |
190 194
|
mpbid |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) |
196 |
195 175
|
opeq12d |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
197 |
191 178
|
syl |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) |
198 |
129
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → 𝑦 ∈ ( N × N ) ) |
199 |
198 179
|
syl |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
200 |
196 197 199
|
3eqtr4d |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → 𝑥 = 𝑦 ) |
201 |
200
|
ex |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑥 ~Q 𝑦 → 𝑥 = 𝑦 ) ) |
202 |
127 201
|
syl5 |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → 𝑥 = 𝑦 ) ) |
203 |
202
|
rgen2 |
⊢ ∀ 𝑥 ∈ Q ∀ 𝑦 ∈ Q ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → 𝑥 = 𝑦 ) |
204 |
123 203
|
vtoclg |
⊢ ( 𝐴 ∈ ( N × N ) → ∀ 𝑥 ∈ Q ∀ 𝑦 ∈ Q ( ( 𝑥 ~Q 𝐴 ∧ 𝑦 ~Q 𝐴 ) → 𝑥 = 𝑦 ) ) |
205 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ~Q 𝐴 ↔ 𝑦 ~Q 𝐴 ) ) |
206 |
205
|
reu4 |
⊢ ( ∃! 𝑥 ∈ Q 𝑥 ~Q 𝐴 ↔ ( ∃ 𝑥 ∈ Q 𝑥 ~Q 𝐴 ∧ ∀ 𝑥 ∈ Q ∀ 𝑦 ∈ Q ( ( 𝑥 ~Q 𝐴 ∧ 𝑦 ~Q 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
207 |
118 204 206
|
sylanbrc |
⊢ ( 𝐴 ∈ ( N × N ) → ∃! 𝑥 ∈ Q 𝑥 ~Q 𝐴 ) |