| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxp2 |
⊢ ( 𝐴 ∈ ( N × N ) ↔ ∃ 𝑎 ∈ N ∃ 𝑏 ∈ N 𝐴 = 〈 𝑎 , 𝑏 〉 ) |
| 2 |
|
pion |
⊢ ( 𝑏 ∈ N → 𝑏 ∈ On ) |
| 3 |
|
onsuc |
⊢ ( 𝑏 ∈ On → suc 𝑏 ∈ On ) |
| 4 |
2 3
|
syl |
⊢ ( 𝑏 ∈ N → suc 𝑏 ∈ On ) |
| 5 |
|
vex |
⊢ 𝑏 ∈ V |
| 6 |
5
|
sucid |
⊢ 𝑏 ∈ suc 𝑏 |
| 7 |
|
eleq2 |
⊢ ( 𝑦 = suc 𝑏 → ( 𝑏 ∈ 𝑦 ↔ 𝑏 ∈ suc 𝑏 ) ) |
| 8 |
7
|
rspcev |
⊢ ( ( suc 𝑏 ∈ On ∧ 𝑏 ∈ suc 𝑏 ) → ∃ 𝑦 ∈ On 𝑏 ∈ 𝑦 ) |
| 9 |
4 6 8
|
sylancl |
⊢ ( 𝑏 ∈ N → ∃ 𝑦 ∈ On 𝑏 ∈ 𝑦 ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ∃ 𝑦 ∈ On 𝑏 ∈ 𝑦 ) |
| 11 |
|
elequ2 |
⊢ ( 𝑦 = 𝑚 → ( 𝑏 ∈ 𝑦 ↔ 𝑏 ∈ 𝑚 ) ) |
| 12 |
11
|
imbi1d |
⊢ ( 𝑦 = 𝑚 → ( ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ↔ ( 𝑏 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 13 |
12
|
2ralbidv |
⊢ ( 𝑦 = 𝑚 → ( ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ↔ ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 14 |
|
opeq1 |
⊢ ( 𝑐 = 𝑎 → 〈 𝑐 , 𝑑 〉 = 〈 𝑎 , 𝑑 〉 ) |
| 15 |
14
|
breq2d |
⊢ ( 𝑐 = 𝑎 → ( 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ↔ 𝑥 ~Q 〈 𝑎 , 𝑑 〉 ) ) |
| 16 |
15
|
rexbidv |
⊢ ( 𝑐 = 𝑎 → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ↔ ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑑 〉 ) ) |
| 17 |
16
|
imbi2d |
⊢ ( 𝑐 = 𝑎 → ( ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ↔ ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑑 〉 ) ) ) |
| 18 |
|
elequ1 |
⊢ ( 𝑑 = 𝑏 → ( 𝑑 ∈ 𝑚 ↔ 𝑏 ∈ 𝑚 ) ) |
| 19 |
|
opeq2 |
⊢ ( 𝑑 = 𝑏 → 〈 𝑎 , 𝑑 〉 = 〈 𝑎 , 𝑏 〉 ) |
| 20 |
19
|
breq2d |
⊢ ( 𝑑 = 𝑏 → ( 𝑥 ~Q 〈 𝑎 , 𝑑 〉 ↔ 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 21 |
20
|
rexbidv |
⊢ ( 𝑑 = 𝑏 → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑑 〉 ↔ ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 22 |
18 21
|
imbi12d |
⊢ ( 𝑑 = 𝑏 → ( ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑑 〉 ) ↔ ( 𝑏 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 23 |
17 22
|
cbvral2vw |
⊢ ( ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ↔ ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 24 |
23
|
ralbii |
⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ↔ ∀ 𝑚 ∈ 𝑦 ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 25 |
|
rexnal |
⊢ ( ∃ 𝑧 ∈ ( N × N ) ¬ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ↔ ¬ ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ) |
| 26 |
|
pm4.63 |
⊢ ( ¬ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ↔ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ) |
| 27 |
|
xp2nd |
⊢ ( 𝑧 ∈ ( N × N ) → ( 2nd ‘ 𝑧 ) ∈ N ) |
| 28 |
|
ltpiord |
⊢ ( ( ( 2nd ‘ 𝑧 ) ∈ N ∧ 𝑏 ∈ N ) → ( ( 2nd ‘ 𝑧 ) <N 𝑏 ↔ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) |
| 29 |
28
|
ancoms |
⊢ ( ( 𝑏 ∈ N ∧ ( 2nd ‘ 𝑧 ) ∈ N ) → ( ( 2nd ‘ 𝑧 ) <N 𝑏 ↔ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) |
| 30 |
27 29
|
sylan2 |
⊢ ( ( 𝑏 ∈ N ∧ 𝑧 ∈ ( N × N ) ) → ( ( 2nd ‘ 𝑧 ) <N 𝑏 ↔ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) |
| 31 |
30
|
adantll |
⊢ ( ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) ∧ 𝑧 ∈ ( N × N ) ) → ( ( 2nd ‘ 𝑧 ) <N 𝑏 ↔ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) |
| 32 |
31
|
anbi2d |
⊢ ( ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) ∧ 𝑧 ∈ ( N × N ) ) → ( ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ↔ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) ) |
| 33 |
26 32
|
bitrid |
⊢ ( ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) ∧ 𝑧 ∈ ( N × N ) ) → ( ¬ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ↔ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) ) |
| 34 |
33
|
rexbidva |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( ∃ 𝑧 ∈ ( N × N ) ¬ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ↔ ∃ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) ) |
| 35 |
25 34
|
bitr3id |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( ¬ ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ↔ ∃ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) ) |
| 36 |
|
xp1st |
⊢ ( 𝑧 ∈ ( N × N ) → ( 1st ‘ 𝑧 ) ∈ N ) |
| 37 |
|
elequ2 |
⊢ ( 𝑚 = 𝑏 → ( 𝑑 ∈ 𝑚 ↔ 𝑑 ∈ 𝑏 ) ) |
| 38 |
37
|
imbi1d |
⊢ ( 𝑚 = 𝑏 → ( ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ↔ ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ) ) |
| 39 |
38
|
2ralbidv |
⊢ ( 𝑚 = 𝑏 → ( ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ↔ ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ) ) |
| 40 |
39
|
rspccv |
⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( 𝑏 ∈ 𝑦 → ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ) ) |
| 41 |
|
opeq1 |
⊢ ( 𝑐 = ( 1st ‘ 𝑧 ) → 〈 𝑐 , 𝑑 〉 = 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) |
| 42 |
41
|
breq2d |
⊢ ( 𝑐 = ( 1st ‘ 𝑧 ) → ( 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ↔ 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) ) |
| 43 |
42
|
rexbidv |
⊢ ( 𝑐 = ( 1st ‘ 𝑧 ) → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ↔ ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) ) |
| 44 |
43
|
imbi2d |
⊢ ( 𝑐 = ( 1st ‘ 𝑧 ) → ( ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ↔ ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) ) ) |
| 45 |
44
|
ralbidv |
⊢ ( 𝑐 = ( 1st ‘ 𝑧 ) → ( ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ↔ ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) ) ) |
| 46 |
45
|
rspccv |
⊢ ( ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( ( 1st ‘ 𝑧 ) ∈ N → ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) ) ) |
| 47 |
|
eleq1 |
⊢ ( 𝑑 = ( 2nd ‘ 𝑧 ) → ( 𝑑 ∈ 𝑏 ↔ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) ) |
| 48 |
|
opeq2 |
⊢ ( 𝑑 = ( 2nd ‘ 𝑧 ) → 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
| 49 |
48
|
breq2d |
⊢ ( 𝑑 = ( 2nd ‘ 𝑧 ) → ( 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ↔ 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
| 50 |
49
|
rexbidv |
⊢ ( 𝑑 = ( 2nd ‘ 𝑧 ) → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ↔ ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
| 51 |
47 50
|
imbi12d |
⊢ ( 𝑑 = ( 2nd ‘ 𝑧 ) → ( ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) ↔ ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) ) |
| 52 |
51
|
rspccv |
⊢ ( ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , 𝑑 〉 ) → ( ( 2nd ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) ) |
| 53 |
46 52
|
syl6 |
⊢ ( ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( ( 1st ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) ) ) |
| 54 |
40 53
|
syl6 |
⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( 𝑏 ∈ 𝑦 → ( ( 1st ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) ) ) ) |
| 55 |
54
|
imp |
⊢ ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) → ( ( 1st ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) ) ) |
| 56 |
36 55
|
syl5 |
⊢ ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) → ( 𝑧 ∈ ( N × N ) → ( ( 2nd ‘ 𝑧 ) ∈ N → ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) ) ) |
| 57 |
27 56
|
mpdi |
⊢ ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) → ( 𝑧 ∈ ( N × N ) → ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) ) |
| 58 |
57
|
3imp |
⊢ ( ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) ∧ 𝑧 ∈ ( N × N ) ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
| 59 |
|
1st2nd2 |
⊢ ( 𝑧 ∈ ( N × N ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
| 60 |
59
|
breq2d |
⊢ ( 𝑧 ∈ ( N × N ) → ( 𝑥 ~Q 𝑧 ↔ 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
| 61 |
60
|
rexbidv |
⊢ ( 𝑧 ∈ ( N × N ) → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 𝑧 ↔ ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
| 62 |
61
|
3ad2ant2 |
⊢ ( ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) ∧ 𝑧 ∈ ( N × N ) ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 𝑧 ↔ ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
| 63 |
58 62
|
mpbird |
⊢ ( ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) ∧ 𝑧 ∈ ( N × N ) ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 𝑧 ) |
| 64 |
|
enqer |
⊢ ~Q Er ( N × N ) |
| 65 |
64
|
a1i |
⊢ ( ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ 𝑥 ~Q 𝑧 ) → ~Q Er ( N × N ) ) |
| 66 |
|
simpr |
⊢ ( ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ 𝑥 ~Q 𝑧 ) → 𝑥 ~Q 𝑧 ) |
| 67 |
|
simpl |
⊢ ( ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ 𝑥 ~Q 𝑧 ) → 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ) |
| 68 |
65 66 67
|
ertr4d |
⊢ ( ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ 𝑥 ~Q 𝑧 ) → 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) |
| 69 |
68
|
ex |
⊢ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ( 𝑥 ~Q 𝑧 → 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 70 |
69
|
reximdv |
⊢ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 𝑧 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 71 |
63 70
|
syl5com |
⊢ ( ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) ∧ 𝑧 ∈ ( N × N ) ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 72 |
71
|
3expia |
⊢ ( ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) ∧ 𝑧 ∈ ( N × N ) ) → ( ( 2nd ‘ 𝑧 ) ∈ 𝑏 → ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 73 |
72
|
impcomd |
⊢ ( ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) ∧ 𝑧 ∈ ( N × N ) ) → ( ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 74 |
73
|
rexlimdva |
⊢ ( ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) ∧ 𝑏 ∈ 𝑦 ) → ( ∃ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 75 |
74
|
ex |
⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( 𝑏 ∈ 𝑦 → ( ∃ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 76 |
75
|
com3r |
⊢ ( ∃ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑏 ) → ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 77 |
35 76
|
biimtrdi |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( ¬ ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) → ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) ) |
| 78 |
77
|
com13 |
⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( ¬ ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) → ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) ) |
| 79 |
|
mulcompi |
⊢ ( 𝑎 ·N 𝑏 ) = ( 𝑏 ·N 𝑎 ) |
| 80 |
|
enqbreq |
⊢ ( ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) ∧ ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) ) → ( 〈 𝑎 , 𝑏 〉 ~Q 〈 𝑎 , 𝑏 〉 ↔ ( 𝑎 ·N 𝑏 ) = ( 𝑏 ·N 𝑎 ) ) ) |
| 81 |
80
|
anidms |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( 〈 𝑎 , 𝑏 〉 ~Q 〈 𝑎 , 𝑏 〉 ↔ ( 𝑎 ·N 𝑏 ) = ( 𝑏 ·N 𝑎 ) ) ) |
| 82 |
79 81
|
mpbiri |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → 〈 𝑎 , 𝑏 〉 ~Q 〈 𝑎 , 𝑏 〉 ) |
| 83 |
|
opelxpi |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → 〈 𝑎 , 𝑏 〉 ∈ ( N × N ) ) |
| 84 |
|
breq1 |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( 𝑦 ~Q 𝑧 ↔ 〈 𝑎 , 𝑏 〉 ~Q 𝑧 ) ) |
| 85 |
|
vex |
⊢ 𝑎 ∈ V |
| 86 |
85 5
|
op2ndd |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( 2nd ‘ 𝑦 ) = 𝑏 ) |
| 87 |
86
|
breq2d |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ↔ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ) |
| 88 |
87
|
notbid |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ↔ ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ) |
| 89 |
84 88
|
imbi12d |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ↔ ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ) ) |
| 90 |
89
|
ralbidv |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ↔ ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ) ) |
| 91 |
|
df-nq |
⊢ Q = { 𝑦 ∈ ( N × N ) ∣ ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) } |
| 92 |
90 91
|
elrab2 |
⊢ ( 〈 𝑎 , 𝑏 〉 ∈ Q ↔ ( 〈 𝑎 , 𝑏 〉 ∈ ( N × N ) ∧ ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) ) ) |
| 93 |
92
|
simplbi2 |
⊢ ( 〈 𝑎 , 𝑏 〉 ∈ ( N × N ) → ( ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) → 〈 𝑎 , 𝑏 〉 ∈ Q ) ) |
| 94 |
83 93
|
syl |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) → 〈 𝑎 , 𝑏 〉 ∈ Q ) ) |
| 95 |
|
breq1 |
⊢ ( 𝑥 = 〈 𝑎 , 𝑏 〉 → ( 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ↔ 〈 𝑎 , 𝑏 〉 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 96 |
95
|
rspcev |
⊢ ( ( 〈 𝑎 , 𝑏 〉 ∈ Q ∧ 〈 𝑎 , 𝑏 〉 ~Q 〈 𝑎 , 𝑏 〉 ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) |
| 97 |
96
|
expcom |
⊢ ( 〈 𝑎 , 𝑏 〉 ~Q 〈 𝑎 , 𝑏 〉 → ( 〈 𝑎 , 𝑏 〉 ∈ Q → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 98 |
82 94 97
|
sylsyld |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 99 |
98
|
com12 |
⊢ ( ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) → ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 100 |
99
|
a1dd |
⊢ ( ∀ 𝑧 ∈ ( N × N ) ( 〈 𝑎 , 𝑏 〉 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N 𝑏 ) → ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 101 |
78 100
|
pm2.61d2 |
⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 102 |
101
|
ralrimivv |
⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑐 ∈ N ∀ 𝑑 ∈ N ( 𝑑 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑐 , 𝑑 〉 ) → ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 103 |
24 102
|
sylbir |
⊢ ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) → ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 104 |
103
|
a1i |
⊢ ( 𝑦 ∈ On → ( ∀ 𝑚 ∈ 𝑦 ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑚 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) → ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 105 |
13 104
|
tfis2 |
⊢ ( 𝑦 ∈ On → ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 106 |
|
rsp |
⊢ ( ∀ 𝑎 ∈ N ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) → ( 𝑎 ∈ N → ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 107 |
105 106
|
syl |
⊢ ( 𝑦 ∈ On → ( 𝑎 ∈ N → ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 108 |
|
rsp |
⊢ ( ∀ 𝑏 ∈ N ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) → ( 𝑏 ∈ N → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 109 |
107 108
|
syl6 |
⊢ ( 𝑦 ∈ On → ( 𝑎 ∈ N → ( 𝑏 ∈ N → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) ) |
| 110 |
109
|
impd |
⊢ ( 𝑦 ∈ On → ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 111 |
110
|
com12 |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( 𝑦 ∈ On → ( 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) ) |
| 112 |
111
|
rexlimdv |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( ∃ 𝑦 ∈ On 𝑏 ∈ 𝑦 → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 113 |
10 112
|
mpd |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) |
| 114 |
|
breq2 |
⊢ ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ( 𝑥 ~Q 𝐴 ↔ 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 115 |
114
|
rexbidv |
⊢ ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ( ∃ 𝑥 ∈ Q 𝑥 ~Q 𝐴 ↔ ∃ 𝑥 ∈ Q 𝑥 ~Q 〈 𝑎 , 𝑏 〉 ) ) |
| 116 |
113 115
|
syl5ibrcom |
⊢ ( ( 𝑎 ∈ N ∧ 𝑏 ∈ N ) → ( 𝐴 = 〈 𝑎 , 𝑏 〉 → ∃ 𝑥 ∈ Q 𝑥 ~Q 𝐴 ) ) |
| 117 |
116
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ N ∃ 𝑏 ∈ N 𝐴 = 〈 𝑎 , 𝑏 〉 → ∃ 𝑥 ∈ Q 𝑥 ~Q 𝐴 ) |
| 118 |
1 117
|
sylbi |
⊢ ( 𝐴 ∈ ( N × N ) → ∃ 𝑥 ∈ Q 𝑥 ~Q 𝐴 ) |
| 119 |
|
breq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑥 ~Q 𝑎 ↔ 𝑥 ~Q 𝐴 ) ) |
| 120 |
|
breq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑦 ~Q 𝑎 ↔ 𝑦 ~Q 𝐴 ) ) |
| 121 |
119 120
|
anbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) ↔ ( 𝑥 ~Q 𝐴 ∧ 𝑦 ~Q 𝐴 ) ) ) |
| 122 |
121
|
imbi1d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝑥 ~Q 𝐴 ∧ 𝑦 ~Q 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
| 123 |
122
|
2ralbidv |
⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑥 ∈ Q ∀ 𝑦 ∈ Q ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ Q ∀ 𝑦 ∈ Q ( ( 𝑥 ~Q 𝐴 ∧ 𝑦 ~Q 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
| 124 |
64
|
a1i |
⊢ ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → ~Q Er ( N × N ) ) |
| 125 |
|
simpl |
⊢ ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → 𝑥 ~Q 𝑎 ) |
| 126 |
|
simpr |
⊢ ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → 𝑦 ~Q 𝑎 ) |
| 127 |
124 125 126
|
ertr4d |
⊢ ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → 𝑥 ~Q 𝑦 ) |
| 128 |
|
mulcompi |
⊢ ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑥 ) ) = ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑥 ) ) |
| 129 |
|
elpqn |
⊢ ( 𝑦 ∈ Q → 𝑦 ∈ ( N × N ) ) |
| 130 |
|
breq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ~Q 𝑧 ↔ 𝑥 ~Q 𝑧 ) ) |
| 131 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 2nd ‘ 𝑦 ) = ( 2nd ‘ 𝑥 ) ) |
| 132 |
131
|
breq2d |
⊢ ( 𝑦 = 𝑥 → ( ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ↔ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ) |
| 133 |
132
|
notbid |
⊢ ( 𝑦 = 𝑥 → ( ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ↔ ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ) |
| 134 |
130 133
|
imbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ↔ ( 𝑥 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
| 135 |
134
|
ralbidv |
⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ↔ ∀ 𝑧 ∈ ( N × N ) ( 𝑥 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
| 136 |
135 91
|
elrab2 |
⊢ ( 𝑥 ∈ Q ↔ ( 𝑥 ∈ ( N × N ) ∧ ∀ 𝑧 ∈ ( N × N ) ( 𝑥 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
| 137 |
136
|
simprbi |
⊢ ( 𝑥 ∈ Q → ∀ 𝑧 ∈ ( N × N ) ( 𝑥 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ) |
| 138 |
|
breq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 ~Q 𝑧 ↔ 𝑥 ~Q 𝑦 ) ) |
| 139 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 𝑦 ) ) |
| 140 |
139
|
breq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ↔ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) |
| 141 |
140
|
notbid |
⊢ ( 𝑧 = 𝑦 → ( ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ↔ ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) |
| 142 |
138 141
|
imbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑥 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ↔ ( 𝑥 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
| 143 |
142
|
rspcva |
⊢ ( ( 𝑦 ∈ ( N × N ) ∧ ∀ 𝑧 ∈ ( N × N ) ( 𝑥 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑥 ) ) ) → ( 𝑥 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) |
| 144 |
129 137 143
|
syl2anr |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑥 ~Q 𝑦 → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) |
| 145 |
144
|
imp |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ¬ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) |
| 146 |
|
elpqn |
⊢ ( 𝑥 ∈ Q → 𝑥 ∈ ( N × N ) ) |
| 147 |
91
|
reqabi |
⊢ ( 𝑦 ∈ Q ↔ ( 𝑦 ∈ ( N × N ) ∧ ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ) ) |
| 148 |
147
|
simprbi |
⊢ ( 𝑦 ∈ Q → ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ) |
| 149 |
|
breq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑦 ~Q 𝑧 ↔ 𝑦 ~Q 𝑥 ) ) |
| 150 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 𝑥 ) ) |
| 151 |
150
|
breq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ↔ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ) ) |
| 152 |
151
|
notbid |
⊢ ( 𝑧 = 𝑥 → ( ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ↔ ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ) ) |
| 153 |
149 152
|
imbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ↔ ( 𝑦 ~Q 𝑥 → ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ) ) ) |
| 154 |
153
|
rspcva |
⊢ ( ( 𝑥 ∈ ( N × N ) ∧ ∀ 𝑧 ∈ ( N × N ) ( 𝑦 ~Q 𝑧 → ¬ ( 2nd ‘ 𝑧 ) <N ( 2nd ‘ 𝑦 ) ) ) → ( 𝑦 ~Q 𝑥 → ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ) ) |
| 155 |
146 148 154
|
syl2an |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑦 ~Q 𝑥 → ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ) ) |
| 156 |
64
|
a1i |
⊢ ( 𝑥 ~Q 𝑦 → ~Q Er ( N × N ) ) |
| 157 |
|
id |
⊢ ( 𝑥 ~Q 𝑦 → 𝑥 ~Q 𝑦 ) |
| 158 |
156 157
|
ersym |
⊢ ( 𝑥 ~Q 𝑦 → 𝑦 ~Q 𝑥 ) |
| 159 |
155 158
|
impel |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ) |
| 160 |
|
xp2nd |
⊢ ( 𝑥 ∈ ( N × N ) → ( 2nd ‘ 𝑥 ) ∈ N ) |
| 161 |
146 160
|
syl |
⊢ ( 𝑥 ∈ Q → ( 2nd ‘ 𝑥 ) ∈ N ) |
| 162 |
161
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( 2nd ‘ 𝑥 ) ∈ N ) |
| 163 |
|
xp2nd |
⊢ ( 𝑦 ∈ ( N × N ) → ( 2nd ‘ 𝑦 ) ∈ N ) |
| 164 |
129 163
|
syl |
⊢ ( 𝑦 ∈ Q → ( 2nd ‘ 𝑦 ) ∈ N ) |
| 165 |
164
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( 2nd ‘ 𝑦 ) ∈ N ) |
| 166 |
|
ltsopi |
⊢ <N Or N |
| 167 |
|
sotric |
⊢ ( ( <N Or N ∧ ( ( 2nd ‘ 𝑥 ) ∈ N ∧ ( 2nd ‘ 𝑦 ) ∈ N ) ) → ( ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ↔ ¬ ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
| 168 |
166 167
|
mpan |
⊢ ( ( ( 2nd ‘ 𝑥 ) ∈ N ∧ ( 2nd ‘ 𝑦 ) ∈ N ) → ( ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ↔ ¬ ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
| 169 |
168
|
notbid |
⊢ ( ( ( 2nd ‘ 𝑥 ) ∈ N ∧ ( 2nd ‘ 𝑦 ) ∈ N ) → ( ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ↔ ¬ ¬ ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
| 170 |
|
notnotb |
⊢ ( ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ↔ ¬ ¬ ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) |
| 171 |
169 170
|
bitr4di |
⊢ ( ( ( 2nd ‘ 𝑥 ) ∈ N ∧ ( 2nd ‘ 𝑦 ) ∈ N ) → ( ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ↔ ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
| 172 |
162 165 171
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ¬ ( 2nd ‘ 𝑥 ) <N ( 2nd ‘ 𝑦 ) ↔ ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) ) |
| 173 |
159 172
|
mpbid |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) |
| 174 |
173
|
ord |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ¬ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) → ( 2nd ‘ 𝑦 ) <N ( 2nd ‘ 𝑥 ) ) ) |
| 175 |
145 174
|
mt3d |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) |
| 176 |
175
|
oveq2d |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑥 ) ) = ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) ) |
| 177 |
128 176
|
eqtrid |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑥 ) ) = ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) ) |
| 178 |
|
1st2nd2 |
⊢ ( 𝑥 ∈ ( N × N ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) |
| 179 |
|
1st2nd2 |
⊢ ( 𝑦 ∈ ( N × N ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 180 |
178 179
|
breqan12d |
⊢ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) → ( 𝑥 ~Q 𝑦 ↔ 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ~Q 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) ) |
| 181 |
|
xp1st |
⊢ ( 𝑥 ∈ ( N × N ) → ( 1st ‘ 𝑥 ) ∈ N ) |
| 182 |
181 160
|
jca |
⊢ ( 𝑥 ∈ ( N × N ) → ( ( 1st ‘ 𝑥 ) ∈ N ∧ ( 2nd ‘ 𝑥 ) ∈ N ) ) |
| 183 |
|
xp1st |
⊢ ( 𝑦 ∈ ( N × N ) → ( 1st ‘ 𝑦 ) ∈ N ) |
| 184 |
183 163
|
jca |
⊢ ( 𝑦 ∈ ( N × N ) → ( ( 1st ‘ 𝑦 ) ∈ N ∧ ( 2nd ‘ 𝑦 ) ∈ N ) ) |
| 185 |
|
enqbreq |
⊢ ( ( ( ( 1st ‘ 𝑥 ) ∈ N ∧ ( 2nd ‘ 𝑥 ) ∈ N ) ∧ ( ( 1st ‘ 𝑦 ) ∈ N ∧ ( 2nd ‘ 𝑦 ) ∈ N ) ) → ( 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ~Q 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ↔ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ) ) |
| 186 |
182 184 185
|
syl2an |
⊢ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) → ( 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ~Q 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ↔ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ) ) |
| 187 |
180 186
|
bitrd |
⊢ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ ( N × N ) ) → ( 𝑥 ~Q 𝑦 ↔ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ) ) |
| 188 |
146 129 187
|
syl2an |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑥 ~Q 𝑦 ↔ ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ) ) |
| 189 |
188
|
biimpa |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( 1st ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ) |
| 190 |
177 189
|
eqtrd |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑥 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ) |
| 191 |
146
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → 𝑥 ∈ ( N × N ) ) |
| 192 |
|
mulcanpi |
⊢ ( ( ( 2nd ‘ 𝑥 ) ∈ N ∧ ( 1st ‘ 𝑥 ) ∈ N ) → ( ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑥 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ↔ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ) |
| 193 |
160 181 192
|
syl2anc |
⊢ ( 𝑥 ∈ ( N × N ) → ( ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑥 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ↔ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ) |
| 194 |
191 193
|
syl |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑥 ) ) = ( ( 2nd ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) ↔ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ) |
| 195 |
190 194
|
mpbid |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) |
| 196 |
195 175
|
opeq12d |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 197 |
191 178
|
syl |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) |
| 198 |
129
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → 𝑦 ∈ ( N × N ) ) |
| 199 |
198 179
|
syl |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 200 |
196 197 199
|
3eqtr4d |
⊢ ( ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) → 𝑥 = 𝑦 ) |
| 201 |
200
|
ex |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( 𝑥 ~Q 𝑦 → 𝑥 = 𝑦 ) ) |
| 202 |
127 201
|
syl5 |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑦 ∈ Q ) → ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → 𝑥 = 𝑦 ) ) |
| 203 |
202
|
rgen2 |
⊢ ∀ 𝑥 ∈ Q ∀ 𝑦 ∈ Q ( ( 𝑥 ~Q 𝑎 ∧ 𝑦 ~Q 𝑎 ) → 𝑥 = 𝑦 ) |
| 204 |
123 203
|
vtoclg |
⊢ ( 𝐴 ∈ ( N × N ) → ∀ 𝑥 ∈ Q ∀ 𝑦 ∈ Q ( ( 𝑥 ~Q 𝐴 ∧ 𝑦 ~Q 𝐴 ) → 𝑥 = 𝑦 ) ) |
| 205 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ~Q 𝐴 ↔ 𝑦 ~Q 𝐴 ) ) |
| 206 |
205
|
reu4 |
⊢ ( ∃! 𝑥 ∈ Q 𝑥 ~Q 𝐴 ↔ ( ∃ 𝑥 ∈ Q 𝑥 ~Q 𝐴 ∧ ∀ 𝑥 ∈ Q ∀ 𝑦 ∈ Q ( ( 𝑥 ~Q 𝐴 ∧ 𝑦 ~Q 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
| 207 |
118 204 206
|
sylanbrc |
⊢ ( 𝐴 ∈ ( N × N ) → ∃! 𝑥 ∈ Q 𝑥 ~Q 𝐴 ) |