Step |
Hyp |
Ref |
Expression |
1 |
|
df-erq |
⊢ [Q] = ( ~Q ∩ ( ( N × N ) × Q ) ) |
2 |
|
inss2 |
⊢ ( ~Q ∩ ( ( N × N ) × Q ) ) ⊆ ( ( N × N ) × Q ) |
3 |
1 2
|
eqsstri |
⊢ [Q] ⊆ ( ( N × N ) × Q ) |
4 |
|
xpss |
⊢ ( ( N × N ) × Q ) ⊆ ( V × V ) |
5 |
3 4
|
sstri |
⊢ [Q] ⊆ ( V × V ) |
6 |
|
df-rel |
⊢ ( Rel [Q] ↔ [Q] ⊆ ( V × V ) ) |
7 |
5 6
|
mpbir |
⊢ Rel [Q] |
8 |
|
nqereu |
⊢ ( 𝑥 ∈ ( N × N ) → ∃! 𝑦 ∈ Q 𝑦 ~Q 𝑥 ) |
9 |
|
df-reu |
⊢ ( ∃! 𝑦 ∈ Q 𝑦 ~Q 𝑥 ↔ ∃! 𝑦 ( 𝑦 ∈ Q ∧ 𝑦 ~Q 𝑥 ) ) |
10 |
|
eumo |
⊢ ( ∃! 𝑦 ( 𝑦 ∈ Q ∧ 𝑦 ~Q 𝑥 ) → ∃* 𝑦 ( 𝑦 ∈ Q ∧ 𝑦 ~Q 𝑥 ) ) |
11 |
9 10
|
sylbi |
⊢ ( ∃! 𝑦 ∈ Q 𝑦 ~Q 𝑥 → ∃* 𝑦 ( 𝑦 ∈ Q ∧ 𝑦 ~Q 𝑥 ) ) |
12 |
8 11
|
syl |
⊢ ( 𝑥 ∈ ( N × N ) → ∃* 𝑦 ( 𝑦 ∈ Q ∧ 𝑦 ~Q 𝑥 ) ) |
13 |
|
moanimv |
⊢ ( ∃* 𝑦 ( 𝑥 ∈ ( N × N ) ∧ ( 𝑦 ∈ Q ∧ 𝑦 ~Q 𝑥 ) ) ↔ ( 𝑥 ∈ ( N × N ) → ∃* 𝑦 ( 𝑦 ∈ Q ∧ 𝑦 ~Q 𝑥 ) ) ) |
14 |
12 13
|
mpbir |
⊢ ∃* 𝑦 ( 𝑥 ∈ ( N × N ) ∧ ( 𝑦 ∈ Q ∧ 𝑦 ~Q 𝑥 ) ) |
15 |
3
|
brel |
⊢ ( 𝑥 [Q] 𝑦 → ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ Q ) ) |
16 |
15
|
simpld |
⊢ ( 𝑥 [Q] 𝑦 → 𝑥 ∈ ( N × N ) ) |
17 |
15
|
simprd |
⊢ ( 𝑥 [Q] 𝑦 → 𝑦 ∈ Q ) |
18 |
|
enqer |
⊢ ~Q Er ( N × N ) |
19 |
18
|
a1i |
⊢ ( 𝑥 [Q] 𝑦 → ~Q Er ( N × N ) ) |
20 |
|
inss1 |
⊢ ( ~Q ∩ ( ( N × N ) × Q ) ) ⊆ ~Q |
21 |
1 20
|
eqsstri |
⊢ [Q] ⊆ ~Q |
22 |
21
|
ssbri |
⊢ ( 𝑥 [Q] 𝑦 → 𝑥 ~Q 𝑦 ) |
23 |
19 22
|
ersym |
⊢ ( 𝑥 [Q] 𝑦 → 𝑦 ~Q 𝑥 ) |
24 |
16 17 23
|
jca32 |
⊢ ( 𝑥 [Q] 𝑦 → ( 𝑥 ∈ ( N × N ) ∧ ( 𝑦 ∈ Q ∧ 𝑦 ~Q 𝑥 ) ) ) |
25 |
24
|
moimi |
⊢ ( ∃* 𝑦 ( 𝑥 ∈ ( N × N ) ∧ ( 𝑦 ∈ Q ∧ 𝑦 ~Q 𝑥 ) ) → ∃* 𝑦 𝑥 [Q] 𝑦 ) |
26 |
14 25
|
ax-mp |
⊢ ∃* 𝑦 𝑥 [Q] 𝑦 |
27 |
26
|
ax-gen |
⊢ ∀ 𝑥 ∃* 𝑦 𝑥 [Q] 𝑦 |
28 |
|
dffun6 |
⊢ ( Fun [Q] ↔ ( Rel [Q] ∧ ∀ 𝑥 ∃* 𝑦 𝑥 [Q] 𝑦 ) ) |
29 |
7 27 28
|
mpbir2an |
⊢ Fun [Q] |
30 |
|
dmss |
⊢ ( [Q] ⊆ ( ( N × N ) × Q ) → dom [Q] ⊆ dom ( ( N × N ) × Q ) ) |
31 |
3 30
|
ax-mp |
⊢ dom [Q] ⊆ dom ( ( N × N ) × Q ) |
32 |
|
1nq |
⊢ 1Q ∈ Q |
33 |
|
ne0i |
⊢ ( 1Q ∈ Q → Q ≠ ∅ ) |
34 |
|
dmxp |
⊢ ( Q ≠ ∅ → dom ( ( N × N ) × Q ) = ( N × N ) ) |
35 |
32 33 34
|
mp2b |
⊢ dom ( ( N × N ) × Q ) = ( N × N ) |
36 |
31 35
|
sseqtri |
⊢ dom [Q] ⊆ ( N × N ) |
37 |
|
reurex |
⊢ ( ∃! 𝑦 ∈ Q 𝑦 ~Q 𝑥 → ∃ 𝑦 ∈ Q 𝑦 ~Q 𝑥 ) |
38 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ Q ) ∧ 𝑦 ~Q 𝑥 ) → 𝑥 ∈ ( N × N ) ) |
39 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ Q ) ∧ 𝑦 ~Q 𝑥 ) → 𝑦 ∈ Q ) |
40 |
18
|
a1i |
⊢ ( ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ Q ) ∧ 𝑦 ~Q 𝑥 ) → ~Q Er ( N × N ) ) |
41 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ Q ) ∧ 𝑦 ~Q 𝑥 ) → 𝑦 ~Q 𝑥 ) |
42 |
40 41
|
ersym |
⊢ ( ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ Q ) ∧ 𝑦 ~Q 𝑥 ) → 𝑥 ~Q 𝑦 ) |
43 |
1
|
breqi |
⊢ ( 𝑥 [Q] 𝑦 ↔ 𝑥 ( ~Q ∩ ( ( N × N ) × Q ) ) 𝑦 ) |
44 |
|
brinxp2 |
⊢ ( 𝑥 ( ~Q ∩ ( ( N × N ) × Q ) ) 𝑦 ↔ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) ) |
45 |
43 44
|
bitri |
⊢ ( 𝑥 [Q] 𝑦 ↔ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ Q ) ∧ 𝑥 ~Q 𝑦 ) ) |
46 |
38 39 42 45
|
syl21anbrc |
⊢ ( ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ Q ) ∧ 𝑦 ~Q 𝑥 ) → 𝑥 [Q] 𝑦 ) |
47 |
46
|
ex |
⊢ ( ( 𝑥 ∈ ( N × N ) ∧ 𝑦 ∈ Q ) → ( 𝑦 ~Q 𝑥 → 𝑥 [Q] 𝑦 ) ) |
48 |
47
|
reximdva |
⊢ ( 𝑥 ∈ ( N × N ) → ( ∃ 𝑦 ∈ Q 𝑦 ~Q 𝑥 → ∃ 𝑦 ∈ Q 𝑥 [Q] 𝑦 ) ) |
49 |
|
rexex |
⊢ ( ∃ 𝑦 ∈ Q 𝑥 [Q] 𝑦 → ∃ 𝑦 𝑥 [Q] 𝑦 ) |
50 |
37 48 49
|
syl56 |
⊢ ( 𝑥 ∈ ( N × N ) → ( ∃! 𝑦 ∈ Q 𝑦 ~Q 𝑥 → ∃ 𝑦 𝑥 [Q] 𝑦 ) ) |
51 |
8 50
|
mpd |
⊢ ( 𝑥 ∈ ( N × N ) → ∃ 𝑦 𝑥 [Q] 𝑦 ) |
52 |
|
vex |
⊢ 𝑥 ∈ V |
53 |
52
|
eldm |
⊢ ( 𝑥 ∈ dom [Q] ↔ ∃ 𝑦 𝑥 [Q] 𝑦 ) |
54 |
51 53
|
sylibr |
⊢ ( 𝑥 ∈ ( N × N ) → 𝑥 ∈ dom [Q] ) |
55 |
54
|
ssriv |
⊢ ( N × N ) ⊆ dom [Q] |
56 |
36 55
|
eqssi |
⊢ dom [Q] = ( N × N ) |
57 |
|
df-fn |
⊢ ( [Q] Fn ( N × N ) ↔ ( Fun [Q] ∧ dom [Q] = ( N × N ) ) ) |
58 |
29 56 57
|
mpbir2an |
⊢ [Q] Fn ( N × N ) |
59 |
3
|
rnssi |
⊢ ran [Q] ⊆ ran ( ( N × N ) × Q ) |
60 |
|
rnxpss |
⊢ ran ( ( N × N ) × Q ) ⊆ Q |
61 |
59 60
|
sstri |
⊢ ran [Q] ⊆ Q |
62 |
|
df-f |
⊢ ( [Q] : ( N × N ) ⟶ Q ↔ ( [Q] Fn ( N × N ) ∧ ran [Q] ⊆ Q ) ) |
63 |
58 61 62
|
mpbir2an |
⊢ [Q] : ( N × N ) ⟶ Q |