Metamath Proof Explorer


Theorem nqerid

Description: Corollary of nqereu : the function /Q acts as the identity on members of Q. . (Contributed by Mario Carneiro, 6-May-2013) (New usage is discouraged.)

Ref Expression
Assertion nqerid ( 𝐴Q → ( [Q] ‘ 𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 nqerf [Q] : ( N × N ) ⟶ Q
2 ffun ( [Q] : ( N × N ) ⟶ Q → Fun [Q] )
3 1 2 ax-mp Fun [Q]
4 elpqn ( 𝐴Q𝐴 ∈ ( N × N ) )
5 id ( 𝐴Q𝐴Q )
6 enqer ~Q Er ( N × N )
7 6 a1i ( 𝐴Q → ~Q Er ( N × N ) )
8 7 4 erref ( 𝐴Q𝐴 ~Q 𝐴 )
9 df-erq [Q] = ( ~Q ∩ ( ( N × N ) × Q ) )
10 9 breqi ( 𝐴 [Q] 𝐴𝐴 ( ~Q ∩ ( ( N × N ) × Q ) ) 𝐴 )
11 brinxp2 ( 𝐴 ( ~Q ∩ ( ( N × N ) × Q ) ) 𝐴 ↔ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐴Q ) ∧ 𝐴 ~Q 𝐴 ) )
12 10 11 bitri ( 𝐴 [Q] 𝐴 ↔ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐴Q ) ∧ 𝐴 ~Q 𝐴 ) )
13 4 5 8 12 syl21anbrc ( 𝐴Q𝐴 [Q] 𝐴 )
14 funbrfv ( Fun [Q] → ( 𝐴 [Q] 𝐴 → ( [Q] ‘ 𝐴 ) = 𝐴 ) )
15 3 13 14 mpsyl ( 𝐴Q → ( [Q] ‘ 𝐴 ) = 𝐴 )