Step |
Hyp |
Ref |
Expression |
1 |
|
nqerf |
⊢ [Q] : ( N × N ) ⟶ Q |
2 |
|
ffun |
⊢ ( [Q] : ( N × N ) ⟶ Q → Fun [Q] ) |
3 |
1 2
|
ax-mp |
⊢ Fun [Q] |
4 |
|
elpqn |
⊢ ( 𝐴 ∈ Q → 𝐴 ∈ ( N × N ) ) |
5 |
|
id |
⊢ ( 𝐴 ∈ Q → 𝐴 ∈ Q ) |
6 |
|
enqer |
⊢ ~Q Er ( N × N ) |
7 |
6
|
a1i |
⊢ ( 𝐴 ∈ Q → ~Q Er ( N × N ) ) |
8 |
7 4
|
erref |
⊢ ( 𝐴 ∈ Q → 𝐴 ~Q 𝐴 ) |
9 |
|
df-erq |
⊢ [Q] = ( ~Q ∩ ( ( N × N ) × Q ) ) |
10 |
9
|
breqi |
⊢ ( 𝐴 [Q] 𝐴 ↔ 𝐴 ( ~Q ∩ ( ( N × N ) × Q ) ) 𝐴 ) |
11 |
|
brinxp2 |
⊢ ( 𝐴 ( ~Q ∩ ( ( N × N ) × Q ) ) 𝐴 ↔ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐴 ∈ Q ) ∧ 𝐴 ~Q 𝐴 ) ) |
12 |
10 11
|
bitri |
⊢ ( 𝐴 [Q] 𝐴 ↔ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐴 ∈ Q ) ∧ 𝐴 ~Q 𝐴 ) ) |
13 |
4 5 8 12
|
syl21anbrc |
⊢ ( 𝐴 ∈ Q → 𝐴 [Q] 𝐴 ) |
14 |
|
funbrfv |
⊢ ( Fun [Q] → ( 𝐴 [Q] 𝐴 → ( [Q] ‘ 𝐴 ) = 𝐴 ) ) |
15 |
3 13 14
|
mpsyl |
⊢ ( 𝐴 ∈ Q → ( [Q] ‘ 𝐴 ) = 𝐴 ) |