Step |
Hyp |
Ref |
Expression |
1 |
|
nsmallnq |
⊢ ( 𝐴 ∈ Q → ∃ 𝑥 𝑥 <Q 𝐴 ) |
2 |
|
abn0 |
⊢ ( { 𝑥 ∣ 𝑥 <Q 𝐴 } ≠ ∅ ↔ ∃ 𝑥 𝑥 <Q 𝐴 ) |
3 |
1 2
|
sylibr |
⊢ ( 𝐴 ∈ Q → { 𝑥 ∣ 𝑥 <Q 𝐴 } ≠ ∅ ) |
4 |
|
0pss |
⊢ ( ∅ ⊊ { 𝑥 ∣ 𝑥 <Q 𝐴 } ↔ { 𝑥 ∣ 𝑥 <Q 𝐴 } ≠ ∅ ) |
5 |
3 4
|
sylibr |
⊢ ( 𝐴 ∈ Q → ∅ ⊊ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) |
6 |
|
ltrelnq |
⊢ <Q ⊆ ( Q × Q ) |
7 |
6
|
brel |
⊢ ( 𝑥 <Q 𝐴 → ( 𝑥 ∈ Q ∧ 𝐴 ∈ Q ) ) |
8 |
7
|
simpld |
⊢ ( 𝑥 <Q 𝐴 → 𝑥 ∈ Q ) |
9 |
8
|
abssi |
⊢ { 𝑥 ∣ 𝑥 <Q 𝐴 } ⊆ Q |
10 |
|
ltsonq |
⊢ <Q Or Q |
11 |
10 6
|
soirri |
⊢ ¬ 𝐴 <Q 𝐴 |
12 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 <Q 𝐴 ↔ 𝐴 <Q 𝐴 ) ) |
13 |
12
|
elabg |
⊢ ( 𝐴 ∈ Q → ( 𝐴 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ↔ 𝐴 <Q 𝐴 ) ) |
14 |
11 13
|
mtbiri |
⊢ ( 𝐴 ∈ Q → ¬ 𝐴 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) |
15 |
14
|
ancli |
⊢ ( 𝐴 ∈ Q → ( 𝐴 ∈ Q ∧ ¬ 𝐴 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) ) |
16 |
|
ssnelpss |
⊢ ( { 𝑥 ∣ 𝑥 <Q 𝐴 } ⊆ Q → ( ( 𝐴 ∈ Q ∧ ¬ 𝐴 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) → { 𝑥 ∣ 𝑥 <Q 𝐴 } ⊊ Q ) ) |
17 |
9 15 16
|
mpsyl |
⊢ ( 𝐴 ∈ Q → { 𝑥 ∣ 𝑥 <Q 𝐴 } ⊊ Q ) |
18 |
|
vex |
⊢ 𝑦 ∈ V |
19 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 <Q 𝐴 ↔ 𝑦 <Q 𝐴 ) ) |
20 |
18 19
|
elab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ↔ 𝑦 <Q 𝐴 ) |
21 |
10 6
|
sotri |
⊢ ( ( 𝑧 <Q 𝑦 ∧ 𝑦 <Q 𝐴 ) → 𝑧 <Q 𝐴 ) |
22 |
21
|
expcom |
⊢ ( 𝑦 <Q 𝐴 → ( 𝑧 <Q 𝑦 → 𝑧 <Q 𝐴 ) ) |
23 |
22
|
adantl |
⊢ ( ( 𝐴 ∈ Q ∧ 𝑦 <Q 𝐴 ) → ( 𝑧 <Q 𝑦 → 𝑧 <Q 𝐴 ) ) |
24 |
|
vex |
⊢ 𝑧 ∈ V |
25 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 <Q 𝐴 ↔ 𝑧 <Q 𝐴 ) ) |
26 |
24 25
|
elab |
⊢ ( 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ↔ 𝑧 <Q 𝐴 ) |
27 |
23 26
|
syl6ibr |
⊢ ( ( 𝐴 ∈ Q ∧ 𝑦 <Q 𝐴 ) → ( 𝑧 <Q 𝑦 → 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) ) |
28 |
27
|
alrimiv |
⊢ ( ( 𝐴 ∈ Q ∧ 𝑦 <Q 𝐴 ) → ∀ 𝑧 ( 𝑧 <Q 𝑦 → 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) ) |
29 |
|
ltbtwnnq |
⊢ ( 𝑦 <Q 𝐴 ↔ ∃ 𝑧 ( 𝑦 <Q 𝑧 ∧ 𝑧 <Q 𝐴 ) ) |
30 |
26
|
anbi2i |
⊢ ( ( 𝑦 <Q 𝑧 ∧ 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) ↔ ( 𝑦 <Q 𝑧 ∧ 𝑧 <Q 𝐴 ) ) |
31 |
30
|
biimpri |
⊢ ( ( 𝑦 <Q 𝑧 ∧ 𝑧 <Q 𝐴 ) → ( 𝑦 <Q 𝑧 ∧ 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) ) |
32 |
31
|
ancomd |
⊢ ( ( 𝑦 <Q 𝑧 ∧ 𝑧 <Q 𝐴 ) → ( 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ∧ 𝑦 <Q 𝑧 ) ) |
33 |
32
|
eximi |
⊢ ( ∃ 𝑧 ( 𝑦 <Q 𝑧 ∧ 𝑧 <Q 𝐴 ) → ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ∧ 𝑦 <Q 𝑧 ) ) |
34 |
29 33
|
sylbi |
⊢ ( 𝑦 <Q 𝐴 → ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ∧ 𝑦 <Q 𝑧 ) ) |
35 |
34
|
adantl |
⊢ ( ( 𝐴 ∈ Q ∧ 𝑦 <Q 𝐴 ) → ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ∧ 𝑦 <Q 𝑧 ) ) |
36 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } 𝑦 <Q 𝑧 ↔ ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ∧ 𝑦 <Q 𝑧 ) ) |
37 |
35 36
|
sylibr |
⊢ ( ( 𝐴 ∈ Q ∧ 𝑦 <Q 𝐴 ) → ∃ 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } 𝑦 <Q 𝑧 ) |
38 |
28 37
|
jca |
⊢ ( ( 𝐴 ∈ Q ∧ 𝑦 <Q 𝐴 ) → ( ∀ 𝑧 ( 𝑧 <Q 𝑦 → 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) ∧ ∃ 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } 𝑦 <Q 𝑧 ) ) |
39 |
20 38
|
sylan2b |
⊢ ( ( 𝐴 ∈ Q ∧ 𝑦 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) → ( ∀ 𝑧 ( 𝑧 <Q 𝑦 → 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) ∧ ∃ 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } 𝑦 <Q 𝑧 ) ) |
40 |
39
|
ralrimiva |
⊢ ( 𝐴 ∈ Q → ∀ 𝑦 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ( ∀ 𝑧 ( 𝑧 <Q 𝑦 → 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) ∧ ∃ 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } 𝑦 <Q 𝑧 ) ) |
41 |
|
elnp |
⊢ ( { 𝑥 ∣ 𝑥 <Q 𝐴 } ∈ P ↔ ( ( ∅ ⊊ { 𝑥 ∣ 𝑥 <Q 𝐴 } ∧ { 𝑥 ∣ 𝑥 <Q 𝐴 } ⊊ Q ) ∧ ∀ 𝑦 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ( ∀ 𝑧 ( 𝑧 <Q 𝑦 → 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } ) ∧ ∃ 𝑧 ∈ { 𝑥 ∣ 𝑥 <Q 𝐴 } 𝑦 <Q 𝑧 ) ) ) |
42 |
5 17 40 41
|
syl21anbrc |
⊢ ( 𝐴 ∈ Q → { 𝑥 ∣ 𝑥 <Q 𝐴 } ∈ P ) |