Description: The universal class is not a relation. (Contributed by Thierry Arnoux, 23-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | nrelv | ⊢ ¬ Rel V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex | ⊢ ∅ ∈ V | |
2 | 0nelxp | ⊢ ¬ ∅ ∈ ( V × V ) | |
3 | nelss | ⊢ ( ( ∅ ∈ V ∧ ¬ ∅ ∈ ( V × V ) ) → ¬ V ⊆ ( V × V ) ) | |
4 | 1 2 3 | mp2an | ⊢ ¬ V ⊆ ( V × V ) |
5 | df-rel | ⊢ ( Rel V ↔ V ⊆ ( V × V ) ) | |
6 | 4 5 | mtbir | ⊢ ¬ Rel V |