Description: The universal class is not a relation. (Contributed by Thierry Arnoux, 23-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nrelv | ⊢ ¬ Rel V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | 0nelxp | ⊢ ¬ ∅ ∈ ( V × V ) | |
| 3 | nelss | ⊢ ( ( ∅ ∈ V ∧ ¬ ∅ ∈ ( V × V ) ) → ¬ V ⊆ ( V × V ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ¬ V ⊆ ( V × V ) |
| 5 | df-rel | ⊢ ( Rel V ↔ V ⊆ ( V × V ) ) | |
| 6 | 4 5 | mtbir | ⊢ ¬ Rel V |