Metamath Proof Explorer
		
		
		
		Description:  Inference adding restricted existential quantifier to negated wff.
       (Contributed by NM, 16-Oct-2003)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | nrex.1 | ⊢ ( 𝑥  ∈  𝐴  →  ¬  𝜓 ) | 
				
					|  | Assertion | nrex | ⊢  ¬  ∃ 𝑥  ∈  𝐴 𝜓 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nrex.1 | ⊢ ( 𝑥  ∈  𝐴  →  ¬  𝜓 ) | 
						
							| 2 | 1 | rgen | ⊢ ∀ 𝑥  ∈  𝐴 ¬  𝜓 | 
						
							| 3 |  | ralnex | ⊢ ( ∀ 𝑥  ∈  𝐴 ¬  𝜓  ↔  ¬  ∃ 𝑥  ∈  𝐴 𝜓 ) | 
						
							| 4 | 2 3 | mpbi | ⊢ ¬  ∃ 𝑥  ∈  𝐴 𝜓 |