Metamath Proof Explorer


Theorem nrexdv

Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003) (Proof shortened by Wolf Lammen, 5-Jan-2020)

Ref Expression
Hypothesis nrexdv.1 ( ( 𝜑𝑥𝐴 ) → ¬ 𝜓 )
Assertion nrexdv ( 𝜑 → ¬ ∃ 𝑥𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 nrexdv.1 ( ( 𝜑𝑥𝐴 ) → ¬ 𝜓 )
2 1 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 ¬ 𝜓 )
3 ralnex ( ∀ 𝑥𝐴 ¬ 𝜓 ↔ ¬ ∃ 𝑥𝐴 𝜓 )
4 2 3 sylib ( 𝜑 → ¬ ∃ 𝑥𝐴 𝜓 )