Metamath Proof Explorer


Theorem nrexrmo

Description: Nonexistence implies restricted "at most one". (Contributed by NM, 17-Jun-2017)

Ref Expression
Assertion nrexrmo ( ¬ ∃ 𝑥𝐴 𝜑 → ∃* 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 pm2.21 ( ¬ ∃ 𝑥𝐴 𝜑 → ( ∃ 𝑥𝐴 𝜑 → ∃! 𝑥𝐴 𝜑 ) )
2 rmo5 ( ∃* 𝑥𝐴 𝜑 ↔ ( ∃ 𝑥𝐴 𝜑 → ∃! 𝑥𝐴 𝜑 ) )
3 1 2 sylibr ( ¬ ∃ 𝑥𝐴 𝜑 → ∃* 𝑥𝐴 𝜑 )