| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nrginvrcn.x |
⊢ 𝑋 = ( Base ‘ 𝑅 ) |
| 2 |
|
nrginvrcn.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 3 |
|
nrginvrcn.i |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
| 4 |
|
nrginvrcn.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) |
| 5 |
|
nrgring |
⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ Ring ) |
| 6 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) |
| 7 |
2 6
|
unitgrp |
⊢ ( 𝑅 ∈ Ring → ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ∈ Grp ) |
| 8 |
2 6
|
unitgrpbas |
⊢ 𝑈 = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) |
| 9 |
2 6 3
|
invrfval |
⊢ 𝐼 = ( invg ‘ ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ) |
| 10 |
8 9
|
grpinvf |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) ∈ Grp → 𝐼 : 𝑈 ⟶ 𝑈 ) |
| 11 |
5 7 10
|
3syl |
⊢ ( 𝑅 ∈ NrmRing → 𝐼 : 𝑈 ⟶ 𝑈 ) |
| 12 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 13 |
12
|
ne0ii |
⊢ ℝ+ ≠ ∅ |
| 14 |
5
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → 𝑅 ∈ Ring ) |
| 15 |
1 2
|
unitss |
⊢ 𝑈 ⊆ 𝑋 |
| 16 |
|
simplrl |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → 𝑥 ∈ 𝑈 ) |
| 17 |
15 16
|
sselid |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → 𝑥 ∈ 𝑋 ) |
| 18 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → 𝑦 ∈ 𝑈 ) |
| 19 |
15 18
|
sselid |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → 𝑦 ∈ 𝑋 ) |
| 20 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 21 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 22 |
1 20 21
|
ring1eq0 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) → 𝑥 = 𝑦 ) ) |
| 23 |
14 17 19 22
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) → 𝑥 = 𝑦 ) ) |
| 24 |
|
eqid |
⊢ ( 𝐼 ‘ 𝑦 ) = ( 𝐼 ‘ 𝑦 ) |
| 25 |
|
nrgngp |
⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp ) |
| 26 |
|
ngpms |
⊢ ( 𝑅 ∈ NrmGrp → 𝑅 ∈ MetSp ) |
| 27 |
|
msxms |
⊢ ( 𝑅 ∈ MetSp → 𝑅 ∈ ∞MetSp ) |
| 28 |
25 26 27
|
3syl |
⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ ∞MetSp ) |
| 29 |
28
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → 𝑅 ∈ ∞MetSp ) |
| 30 |
11
|
adantr |
⊢ ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) → 𝐼 : 𝑈 ⟶ 𝑈 ) |
| 31 |
30
|
ffvelcdmda |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑦 ) ∈ 𝑈 ) |
| 32 |
15 31
|
sselid |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑦 ) ∈ 𝑋 ) |
| 33 |
|
eqid |
⊢ ( dist ‘ 𝑅 ) = ( dist ‘ 𝑅 ) |
| 34 |
1 33
|
xmseq0 |
⊢ ( ( 𝑅 ∈ ∞MetSp ∧ ( 𝐼 ‘ 𝑦 ) ∈ 𝑋 ∧ ( 𝐼 ‘ 𝑦 ) ∈ 𝑋 ) → ( ( ( 𝐼 ‘ 𝑦 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) = 0 ↔ ( 𝐼 ‘ 𝑦 ) = ( 𝐼 ‘ 𝑦 ) ) ) |
| 35 |
29 32 32 34
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( ( 𝐼 ‘ 𝑦 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) = 0 ↔ ( 𝐼 ‘ 𝑦 ) = ( 𝐼 ‘ 𝑦 ) ) ) |
| 36 |
24 35
|
mpbiri |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( 𝐼 ‘ 𝑦 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) = 0 ) |
| 37 |
|
simplrr |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → 𝑟 ∈ ℝ+ ) |
| 38 |
37
|
rpgt0d |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → 0 < 𝑟 ) |
| 39 |
36 38
|
eqbrtrd |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( 𝐼 ‘ 𝑦 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) |
| 40 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑦 ) ) |
| 41 |
40
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) = ( ( 𝐼 ‘ 𝑦 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) ) |
| 42 |
41
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ↔ ( ( 𝐼 ‘ 𝑦 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 43 |
39 42
|
syl5ibrcom |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( 𝑥 = 𝑦 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 44 |
23 43
|
syld |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 45 |
44
|
imp |
⊢ ( ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) |
| 46 |
45
|
an32s |
⊢ ( ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) |
| 47 |
46
|
a1d |
⊢ ( ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 48 |
47
|
ralrimiva |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 49 |
48
|
ralrimivw |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ∀ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 50 |
|
r19.2z |
⊢ ( ( ℝ+ ≠ ∅ ∧ ∀ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) → ∃ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 51 |
13 49 50
|
sylancr |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ∃ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 52 |
|
eqid |
⊢ ( norm ‘ 𝑅 ) = ( norm ‘ 𝑅 ) |
| 53 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ NrmRing ) |
| 54 |
5
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 55 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 56 |
20 21
|
isnzr |
⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 57 |
54 55 56
|
sylanbrc |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑅 ∈ NzRing ) |
| 58 |
|
simplrl |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑥 ∈ 𝑈 ) |
| 59 |
|
simplrr |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → 𝑟 ∈ ℝ+ ) |
| 60 |
|
eqid |
⊢ ( if ( 1 ≤ ( ( ( norm ‘ 𝑅 ) ‘ 𝑥 ) · 𝑟 ) , 1 , ( ( ( norm ‘ 𝑅 ) ‘ 𝑥 ) · 𝑟 ) ) · ( ( ( norm ‘ 𝑅 ) ‘ 𝑥 ) / 2 ) ) = ( if ( 1 ≤ ( ( ( norm ‘ 𝑅 ) ‘ 𝑥 ) · 𝑟 ) , 1 , ( ( ( norm ‘ 𝑅 ) ‘ 𝑥 ) · 𝑟 ) ) · ( ( ( norm ‘ 𝑅 ) ‘ 𝑥 ) / 2 ) ) |
| 61 |
1 2 3 52 33 53 57 58 59 60
|
nrginvrcnlem |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) → ∃ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 62 |
51 61
|
pm2.61dane |
⊢ ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) → ∃ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 63 |
16 18
|
ovresd |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( 𝑥 ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) 𝑦 ) = ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) ) |
| 64 |
63
|
breq1d |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( 𝑥 ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) 𝑦 ) < 𝑠 ↔ ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 ) ) |
| 65 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) → 𝑥 ∈ 𝑈 ) |
| 66 |
|
ffvelcdm |
⊢ ( ( 𝐼 : 𝑈 ⟶ 𝑈 ∧ 𝑥 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝑈 ) |
| 67 |
11 65 66
|
syl2an |
⊢ ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝑈 ) |
| 68 |
67
|
adantr |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝑈 ) |
| 69 |
68 31
|
ovresd |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( 𝐼 ‘ 𝑥 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ( 𝐼 ‘ 𝑦 ) ) = ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) ) |
| 70 |
69
|
breq1d |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( ( 𝐼 ‘ 𝑥 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ↔ ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 71 |
64 70
|
imbi12d |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑦 ∈ 𝑈 ) → ( ( ( 𝑥 ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ↔ ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) ) |
| 72 |
71
|
ralbidva |
⊢ ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) → ( ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ↔ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) ) |
| 73 |
72
|
rexbidv |
⊢ ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) → ( ∃ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ↔ ∃ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( dist ‘ 𝑅 ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) ) |
| 74 |
62 73
|
mpbird |
⊢ ( ( 𝑅 ∈ NrmRing ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑟 ∈ ℝ+ ) ) → ∃ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 75 |
74
|
ralrimivva |
⊢ ( 𝑅 ∈ NrmRing → ∀ 𝑥 ∈ 𝑈 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) |
| 76 |
|
xpss12 |
⊢ ( ( 𝑈 ⊆ 𝑋 ∧ 𝑈 ⊆ 𝑋 ) → ( 𝑈 × 𝑈 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 77 |
15 15 76
|
mp2an |
⊢ ( 𝑈 × 𝑈 ) ⊆ ( 𝑋 × 𝑋 ) |
| 78 |
|
resabs1 |
⊢ ( ( 𝑈 × 𝑈 ) ⊆ ( 𝑋 × 𝑋 ) → ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝑈 × 𝑈 ) ) = ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) |
| 79 |
77 78
|
ax-mp |
⊢ ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝑈 × 𝑈 ) ) = ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) |
| 80 |
|
eqid |
⊢ ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) = ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) |
| 81 |
1 80
|
xmsxmet |
⊢ ( 𝑅 ∈ ∞MetSp → ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( ∞Met ‘ 𝑋 ) ) |
| 82 |
25 26 27 81
|
4syl |
⊢ ( 𝑅 ∈ NrmRing → ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( ∞Met ‘ 𝑋 ) ) |
| 83 |
|
xmetres2 |
⊢ ( ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝑈 × 𝑈 ) ) ∈ ( ∞Met ‘ 𝑈 ) ) |
| 84 |
82 15 83
|
sylancl |
⊢ ( 𝑅 ∈ NrmRing → ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝑈 × 𝑈 ) ) ∈ ( ∞Met ‘ 𝑈 ) ) |
| 85 |
79 84
|
eqeltrrid |
⊢ ( 𝑅 ∈ NrmRing → ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ∈ ( ∞Met ‘ 𝑈 ) ) |
| 86 |
|
eqid |
⊢ ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) |
| 87 |
86 86
|
metcn |
⊢ ( ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ∈ ( ∞Met ‘ 𝑈 ) ∧ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ∈ ( ∞Met ‘ 𝑈 ) ) → ( 𝐼 ∈ ( ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) ) ↔ ( 𝐼 : 𝑈 ⟶ 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) ) ) |
| 88 |
85 85 87
|
syl2anc |
⊢ ( 𝑅 ∈ NrmRing → ( 𝐼 ∈ ( ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) ) ↔ ( 𝐼 : 𝑈 ⟶ 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑦 ∈ 𝑈 ( ( 𝑥 ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) 𝑦 ) < 𝑠 → ( ( 𝐼 ‘ 𝑥 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ( 𝐼 ‘ 𝑦 ) ) < 𝑟 ) ) ) ) |
| 89 |
11 75 88
|
mpbir2and |
⊢ ( 𝑅 ∈ NrmRing → 𝐼 ∈ ( ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) ) ) |
| 90 |
4 1 80
|
mstopn |
⊢ ( 𝑅 ∈ MetSp → 𝐽 = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) |
| 91 |
25 26 90
|
3syl |
⊢ ( 𝑅 ∈ NrmRing → 𝐽 = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) |
| 92 |
91
|
oveq1d |
⊢ ( 𝑅 ∈ NrmRing → ( 𝐽 ↾t 𝑈 ) = ( ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ) ↾t 𝑈 ) ) |
| 93 |
79
|
eqcomi |
⊢ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) = ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ↾ ( 𝑈 × 𝑈 ) ) |
| 94 |
|
eqid |
⊢ ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ) |
| 95 |
93 94 86
|
metrest |
⊢ ( ( ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ) ↾t 𝑈 ) = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) ) |
| 96 |
82 15 95
|
sylancl |
⊢ ( 𝑅 ∈ NrmRing → ( ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑋 × 𝑋 ) ) ) ↾t 𝑈 ) = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) ) |
| 97 |
92 96
|
eqtrd |
⊢ ( 𝑅 ∈ NrmRing → ( 𝐽 ↾t 𝑈 ) = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) ) |
| 98 |
97 97
|
oveq12d |
⊢ ( 𝑅 ∈ NrmRing → ( ( 𝐽 ↾t 𝑈 ) Cn ( 𝐽 ↾t 𝑈 ) ) = ( ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝑈 × 𝑈 ) ) ) ) ) |
| 99 |
89 98
|
eleqtrrd |
⊢ ( 𝑅 ∈ NrmRing → 𝐼 ∈ ( ( 𝐽 ↾t 𝑈 ) Cn ( 𝐽 ↾t 𝑈 ) ) ) |