Metamath Proof Explorer


Theorem nrgngp

Description: A normed ring is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion nrgngp ( 𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp )

Proof

Step Hyp Ref Expression
1 eqid ( norm ‘ 𝑅 ) = ( norm ‘ 𝑅 )
2 eqid ( AbsVal ‘ 𝑅 ) = ( AbsVal ‘ 𝑅 )
3 1 2 isnrg ( 𝑅 ∈ NrmRing ↔ ( 𝑅 ∈ NrmGrp ∧ ( norm ‘ 𝑅 ) ∈ ( AbsVal ‘ 𝑅 ) ) )
4 3 simplbi ( 𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp )