Description: A normed ring is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | nrgngp | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( norm ‘ 𝑅 ) = ( norm ‘ 𝑅 ) | |
2 | eqid | ⊢ ( AbsVal ‘ 𝑅 ) = ( AbsVal ‘ 𝑅 ) | |
3 | 1 2 | isnrg | ⊢ ( 𝑅 ∈ NrmRing ↔ ( 𝑅 ∈ NrmGrp ∧ ( norm ‘ 𝑅 ) ∈ ( AbsVal ‘ 𝑅 ) ) ) |
4 | 3 | simplbi | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp ) |