Description: A normed ring is a ring. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nrgring | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( norm ‘ 𝑅 ) = ( norm ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( AbsVal ‘ 𝑅 ) = ( AbsVal ‘ 𝑅 ) | |
| 3 | 1 2 | nrgabv | ⊢ ( 𝑅 ∈ NrmRing → ( norm ‘ 𝑅 ) ∈ ( AbsVal ‘ 𝑅 ) ) |
| 4 | 2 | abvrcl | ⊢ ( ( norm ‘ 𝑅 ) ∈ ( AbsVal ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
| 5 | 3 4 | syl | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ Ring ) |