Step |
Hyp |
Ref |
Expression |
1 |
|
nrgtrg |
⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ TopRing ) |
2 |
1
|
adantr |
⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → 𝑅 ∈ TopRing ) |
3 |
|
simpr |
⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → 𝑅 ∈ DivRing ) |
4 |
|
nrgring |
⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ Ring ) |
5 |
4
|
adantr |
⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → 𝑅 ∈ Ring ) |
6 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) |
8 |
6 7
|
unitgrp |
⊢ ( 𝑅 ∈ Ring → ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ∈ Grp ) |
9 |
5 8
|
syl |
⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ∈ Grp ) |
10 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
11 |
10
|
trgtmd |
⊢ ( 𝑅 ∈ TopRing → ( mulGrp ‘ 𝑅 ) ∈ TopMnd ) |
12 |
2 11
|
syl |
⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → ( mulGrp ‘ 𝑅 ) ∈ TopMnd ) |
13 |
6 10
|
unitsubm |
⊢ ( 𝑅 ∈ Ring → ( Unit ‘ 𝑅 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
14 |
5 13
|
syl |
⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → ( Unit ‘ 𝑅 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
15 |
7
|
submtmd |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ TopMnd ∧ ( Unit ‘ 𝑅 ) ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) → ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ∈ TopMnd ) |
16 |
12 14 15
|
syl2anc |
⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ∈ TopMnd ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
18 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
19 |
|
eqid |
⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ 𝑅 ) |
20 |
17 6 18 19
|
nrginvrcn |
⊢ ( 𝑅 ∈ NrmRing → ( invr ‘ 𝑅 ) ∈ ( ( ( TopOpen ‘ 𝑅 ) ↾t ( Unit ‘ 𝑅 ) ) Cn ( ( TopOpen ‘ 𝑅 ) ↾t ( Unit ‘ 𝑅 ) ) ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → ( invr ‘ 𝑅 ) ∈ ( ( ( TopOpen ‘ 𝑅 ) ↾t ( Unit ‘ 𝑅 ) ) Cn ( ( TopOpen ‘ 𝑅 ) ↾t ( Unit ‘ 𝑅 ) ) ) ) |
22 |
10 19
|
mgptopn |
⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ ( mulGrp ‘ 𝑅 ) ) |
23 |
7 22
|
resstopn |
⊢ ( ( TopOpen ‘ 𝑅 ) ↾t ( Unit ‘ 𝑅 ) ) = ( TopOpen ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ) |
24 |
6 7 18
|
invrfval |
⊢ ( invr ‘ 𝑅 ) = ( invg ‘ ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ) |
25 |
23 24
|
istgp |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ∈ TopGrp ↔ ( ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ∈ Grp ∧ ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ∈ TopMnd ∧ ( invr ‘ 𝑅 ) ∈ ( ( ( TopOpen ‘ 𝑅 ) ↾t ( Unit ‘ 𝑅 ) ) Cn ( ( TopOpen ‘ 𝑅 ) ↾t ( Unit ‘ 𝑅 ) ) ) ) ) |
26 |
9 16 21 25
|
syl3anbrc |
⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ∈ TopGrp ) |
27 |
10 6
|
istdrg |
⊢ ( 𝑅 ∈ TopDRing ↔ ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ∈ TopGrp ) ) |
28 |
2 3 26 27
|
syl3anbrc |
⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) → 𝑅 ∈ TopDRing ) |