Step |
Hyp |
Ref |
Expression |
1 |
|
nrgtgp |
⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ TopGrp ) |
2 |
|
nrgring |
⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ Ring ) |
3 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
4 |
3
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
5 |
2 4
|
syl |
⊢ ( 𝑅 ∈ NrmRing → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
6 |
|
tgptps |
⊢ ( 𝑅 ∈ TopGrp → 𝑅 ∈ TopSp ) |
7 |
1 6
|
syl |
⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ TopSp ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ 𝑅 ) |
10 |
8 9
|
istps |
⊢ ( 𝑅 ∈ TopSp ↔ ( TopOpen ‘ 𝑅 ) ∈ ( TopOn ‘ ( Base ‘ 𝑅 ) ) ) |
11 |
7 10
|
sylib |
⊢ ( 𝑅 ∈ NrmRing → ( TopOpen ‘ 𝑅 ) ∈ ( TopOn ‘ ( Base ‘ 𝑅 ) ) ) |
12 |
3 8
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
13 |
3 9
|
mgptopn |
⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ ( mulGrp ‘ 𝑅 ) ) |
14 |
12 13
|
istps |
⊢ ( ( mulGrp ‘ 𝑅 ) ∈ TopSp ↔ ( TopOpen ‘ 𝑅 ) ∈ ( TopOn ‘ ( Base ‘ 𝑅 ) ) ) |
15 |
11 14
|
sylibr |
⊢ ( 𝑅 ∈ NrmRing → ( mulGrp ‘ 𝑅 ) ∈ TopSp ) |
16 |
|
rlmnlm |
⊢ ( 𝑅 ∈ NrmRing → ( ringLMod ‘ 𝑅 ) ∈ NrmMod ) |
17 |
|
rlmsca2 |
⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) |
18 |
|
rlmscaf |
⊢ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) = ( ·sf ‘ ( ringLMod ‘ 𝑅 ) ) |
19 |
|
rlmtopn |
⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ ( ringLMod ‘ 𝑅 ) ) |
20 |
|
df-base |
⊢ Base = Slot 1 |
21 |
20 8
|
strfvi |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( I ‘ 𝑅 ) ) |
22 |
21
|
a1i |
⊢ ( ⊤ → ( Base ‘ 𝑅 ) = ( Base ‘ ( I ‘ 𝑅 ) ) ) |
23 |
|
df-tset |
⊢ TopSet = Slot 9 |
24 |
|
eqid |
⊢ ( TopSet ‘ 𝑅 ) = ( TopSet ‘ 𝑅 ) |
25 |
23 24
|
strfvi |
⊢ ( TopSet ‘ 𝑅 ) = ( TopSet ‘ ( I ‘ 𝑅 ) ) |
26 |
25
|
a1i |
⊢ ( ⊤ → ( TopSet ‘ 𝑅 ) = ( TopSet ‘ ( I ‘ 𝑅 ) ) ) |
27 |
22 26
|
topnpropd |
⊢ ( ⊤ → ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ ( I ‘ 𝑅 ) ) ) |
28 |
27
|
mptru |
⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ ( I ‘ 𝑅 ) ) |
29 |
17 18 19 28
|
nlmvscn |
⊢ ( ( ringLMod ‘ 𝑅 ) ∈ NrmMod → ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) ∈ ( ( ( TopOpen ‘ 𝑅 ) ×t ( TopOpen ‘ 𝑅 ) ) Cn ( TopOpen ‘ 𝑅 ) ) ) |
30 |
16 29
|
syl |
⊢ ( 𝑅 ∈ NrmRing → ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) ∈ ( ( ( TopOpen ‘ 𝑅 ) ×t ( TopOpen ‘ 𝑅 ) ) Cn ( TopOpen ‘ 𝑅 ) ) ) |
31 |
|
eqid |
⊢ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) = ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) |
32 |
31 13
|
istmd |
⊢ ( ( mulGrp ‘ 𝑅 ) ∈ TopMnd ↔ ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ( mulGrp ‘ 𝑅 ) ∈ TopSp ∧ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) ∈ ( ( ( TopOpen ‘ 𝑅 ) ×t ( TopOpen ‘ 𝑅 ) ) Cn ( TopOpen ‘ 𝑅 ) ) ) ) |
33 |
5 15 30 32
|
syl3anbrc |
⊢ ( 𝑅 ∈ NrmRing → ( mulGrp ‘ 𝑅 ) ∈ TopMnd ) |
34 |
3
|
istrg |
⊢ ( 𝑅 ∈ TopRing ↔ ( 𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ ( mulGrp ‘ 𝑅 ) ∈ TopMnd ) ) |
35 |
1 2 33 34
|
syl3anbrc |
⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ TopRing ) |