Metamath Proof Explorer


Theorem nrmhaus

Description: A T_1 normal space is Hausdorff. A Hausdorff or T_1 normal space is also known as a T_4 space. (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion nrmhaus ( 𝐽 ∈ Nrm → ( 𝐽 ∈ Haus ↔ 𝐽 ∈ Fre ) )

Proof

Step Hyp Ref Expression
1 haust1 ( 𝐽 ∈ Haus → 𝐽 ∈ Fre )
2 nrmreg ( ( 𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre ) → 𝐽 ∈ Reg )
3 2 ex ( 𝐽 ∈ Nrm → ( 𝐽 ∈ Fre → 𝐽 ∈ Reg ) )
4 t1t0 ( 𝐽 ∈ Fre → 𝐽 ∈ Kol2 )
5 reghaus ( 𝐽 ∈ Reg → ( 𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2 ) )
6 4 5 syl5ibrcom ( 𝐽 ∈ Fre → ( 𝐽 ∈ Reg → 𝐽 ∈ Haus ) )
7 3 6 sylcom ( 𝐽 ∈ Nrm → ( 𝐽 ∈ Fre → 𝐽 ∈ Haus ) )
8 1 7 impbid2 ( 𝐽 ∈ Nrm → ( 𝐽 ∈ Haus ↔ 𝐽 ∈ Fre ) )