Step |
Hyp |
Ref |
Expression |
1 |
|
nrmmetd.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
nrmmetd.m |
⊢ − = ( -g ‘ 𝐺 ) |
3 |
|
nrmmetd.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
|
nrmmetd.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
5 |
|
nrmmetd.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
6 |
|
nrmmetd.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) |
7 |
|
nrmmetd.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
8 |
1 2
|
grpsubf |
⊢ ( 𝐺 ∈ Grp → − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
9 |
4 8
|
syl |
⊢ ( 𝜑 → − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
10 |
|
fco |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℝ ∧ − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) → ( 𝐹 ∘ − ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
11 |
5 9 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ − ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
12 |
|
opelxpi |
⊢ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → 〈 𝑎 , 𝑏 〉 ∈ ( 𝑋 × 𝑋 ) ) |
13 |
|
fvco3 |
⊢ ( ( − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ 〈 𝑎 , 𝑏 〉 ∈ ( 𝑋 × 𝑋 ) ) → ( ( 𝐹 ∘ − ) ‘ 〈 𝑎 , 𝑏 〉 ) = ( 𝐹 ‘ ( − ‘ 〈 𝑎 , 𝑏 〉 ) ) ) |
14 |
9 12 13
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ∘ − ) ‘ 〈 𝑎 , 𝑏 〉 ) = ( 𝐹 ‘ ( − ‘ 〈 𝑎 , 𝑏 〉 ) ) ) |
15 |
|
df-ov |
⊢ ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) = ( ( 𝐹 ∘ − ) ‘ 〈 𝑎 , 𝑏 〉 ) |
16 |
|
df-ov |
⊢ ( 𝑎 − 𝑏 ) = ( − ‘ 〈 𝑎 , 𝑏 〉 ) |
17 |
16
|
fveq2i |
⊢ ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) = ( 𝐹 ‘ ( − ‘ 〈 𝑎 , 𝑏 〉 ) ) |
18 |
14 15 17
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) = ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ) |
19 |
18
|
eqeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) = 0 ↔ ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) = 0 ) ) |
20 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) |
21 |
1 2
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑎 − 𝑏 ) ∈ 𝑋 ) |
22 |
21
|
3expb |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 − 𝑏 ) ∈ 𝑋 ) |
23 |
4 22
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 − 𝑏 ) ∈ 𝑋 ) |
24 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑎 − 𝑏 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ) |
25 |
24
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑎 − 𝑏 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) = 0 ) ) |
26 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑎 − 𝑏 ) → ( 𝑥 = 0 ↔ ( 𝑎 − 𝑏 ) = 0 ) ) |
27 |
25 26
|
bibi12d |
⊢ ( 𝑥 = ( 𝑎 − 𝑏 ) → ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ↔ ( ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) = 0 ↔ ( 𝑎 − 𝑏 ) = 0 ) ) ) |
28 |
27
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑎 − 𝑏 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) = 0 ↔ ( 𝑎 − 𝑏 ) = 0 ) ) |
29 |
20 23 28
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) = 0 ↔ ( 𝑎 − 𝑏 ) = 0 ) ) |
30 |
1 3 2
|
grpsubeq0 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( ( 𝑎 − 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ) |
31 |
30
|
3expb |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝑎 − 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ) |
32 |
4 31
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝑎 − 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ) |
33 |
19 29 32
|
3bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ) |
34 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → 𝐹 : 𝑋 ⟶ ℝ ) |
35 |
23
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑎 − 𝑏 ) ∈ 𝑋 ) |
36 |
34 35
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ∈ ℝ ) |
37 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
38 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → 𝑎 ∈ 𝑋 ) |
39 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → 𝑐 ∈ 𝑋 ) |
40 |
1 2
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) → ( 𝑎 − 𝑐 ) ∈ 𝑋 ) |
41 |
37 38 39 40
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑎 − 𝑐 ) ∈ 𝑋 ) |
42 |
34 41
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) ∈ ℝ ) |
43 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → 𝑏 ∈ 𝑋 ) |
44 |
1 2
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) → ( 𝑏 − 𝑐 ) ∈ 𝑋 ) |
45 |
37 43 39 44
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑏 − 𝑐 ) ∈ 𝑋 ) |
46 |
34 45
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ∈ ℝ ) |
47 |
42 46
|
readdcld |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ) ∈ ℝ ) |
48 |
1 2
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ) → ( 𝑐 − 𝑎 ) ∈ 𝑋 ) |
49 |
37 39 38 48
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 − 𝑎 ) ∈ 𝑋 ) |
50 |
34 49
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) ∈ ℝ ) |
51 |
1 2
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑐 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑐 − 𝑏 ) ∈ 𝑋 ) |
52 |
37 39 43 51
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 − 𝑏 ) ∈ 𝑋 ) |
53 |
34 52
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ∈ ℝ ) |
54 |
50 53
|
readdcld |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) + ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ) ∈ ℝ ) |
55 |
1 2
|
grpnnncan2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝑎 − 𝑐 ) − ( 𝑏 − 𝑐 ) ) = ( 𝑎 − 𝑏 ) ) |
56 |
37 38 43 39 55
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝑎 − 𝑐 ) − ( 𝑏 − 𝑐 ) ) = ( 𝑎 − 𝑏 ) ) |
57 |
56
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝑎 − 𝑐 ) − ( 𝑏 − 𝑐 ) ) ) = ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ) |
58 |
7
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
60 |
|
fvoveq1 |
⊢ ( 𝑥 = ( 𝑎 − 𝑐 ) → ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) = ( 𝐹 ‘ ( ( 𝑎 − 𝑐 ) − 𝑦 ) ) ) |
61 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑎 − 𝑐 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) ) |
62 |
61
|
oveq1d |
⊢ ( 𝑥 = ( 𝑎 − 𝑐 ) → ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ 𝑦 ) ) ) |
63 |
60 62
|
breq12d |
⊢ ( 𝑥 = ( 𝑎 − 𝑐 ) → ( ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( ( 𝑎 − 𝑐 ) − 𝑦 ) ) ≤ ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ 𝑦 ) ) ) ) |
64 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝑏 − 𝑐 ) → ( ( 𝑎 − 𝑐 ) − 𝑦 ) = ( ( 𝑎 − 𝑐 ) − ( 𝑏 − 𝑐 ) ) ) |
65 |
64
|
fveq2d |
⊢ ( 𝑦 = ( 𝑏 − 𝑐 ) → ( 𝐹 ‘ ( ( 𝑎 − 𝑐 ) − 𝑦 ) ) = ( 𝐹 ‘ ( ( 𝑎 − 𝑐 ) − ( 𝑏 − 𝑐 ) ) ) ) |
66 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑏 − 𝑐 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ) |
67 |
66
|
oveq2d |
⊢ ( 𝑦 = ( 𝑏 − 𝑐 ) → ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ) ) |
68 |
65 67
|
breq12d |
⊢ ( 𝑦 = ( 𝑏 − 𝑐 ) → ( ( 𝐹 ‘ ( ( 𝑎 − 𝑐 ) − 𝑦 ) ) ≤ ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( ( 𝑎 − 𝑐 ) − ( 𝑏 − 𝑐 ) ) ) ≤ ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ) ) ) |
69 |
63 68
|
rspc2va |
⊢ ( ( ( ( 𝑎 − 𝑐 ) ∈ 𝑋 ∧ ( 𝑏 − 𝑐 ) ∈ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ ( ( 𝑎 − 𝑐 ) − ( 𝑏 − 𝑐 ) ) ) ≤ ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ) ) |
70 |
41 45 59 69
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝑎 − 𝑐 ) − ( 𝑏 − 𝑐 ) ) ) ≤ ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ) ) |
71 |
57 70
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ≤ ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ) ) |
72 |
|
eleq1w |
⊢ ( 𝑏 = 𝑐 → ( 𝑏 ∈ 𝑋 ↔ 𝑐 ∈ 𝑋 ) ) |
73 |
72
|
anbi2d |
⊢ ( 𝑏 = 𝑐 → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ↔ ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ) |
74 |
73
|
anbi2d |
⊢ ( 𝑏 = 𝑐 → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ) ) |
75 |
|
oveq2 |
⊢ ( 𝑏 = 𝑐 → ( 𝑎 − 𝑏 ) = ( 𝑎 − 𝑐 ) ) |
76 |
75
|
fveq2d |
⊢ ( 𝑏 = 𝑐 → ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) = ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) ) |
77 |
|
fvoveq1 |
⊢ ( 𝑏 = 𝑐 → ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) = ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) ) |
78 |
76 77
|
breq12d |
⊢ ( 𝑏 = 𝑐 → ( ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ≤ ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ↔ ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) ≤ ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) ) ) |
79 |
74 78
|
imbi12d |
⊢ ( 𝑏 = 𝑐 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ≤ ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) ≤ ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) ) ) ) |
80 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
81 |
1 3
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝑋 ) |
82 |
80 81
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 0 ∈ 𝑋 ) |
83 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑏 ∈ 𝑋 ) |
84 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑎 ∈ 𝑋 ) |
85 |
1 2
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑏 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ) → ( 𝑏 − 𝑎 ) ∈ 𝑋 ) |
86 |
80 83 84 85
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑏 − 𝑎 ) ∈ 𝑋 ) |
87 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
88 |
|
fvoveq1 |
⊢ ( 𝑥 = 0 → ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) = ( 𝐹 ‘ ( 0 − 𝑦 ) ) ) |
89 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 0 ) ) |
90 |
89
|
oveq1d |
⊢ ( 𝑥 = 0 → ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
91 |
88 90
|
breq12d |
⊢ ( 𝑥 = 0 → ( ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 0 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ 𝑦 ) ) ) ) |
92 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝑏 − 𝑎 ) → ( 0 − 𝑦 ) = ( 0 − ( 𝑏 − 𝑎 ) ) ) |
93 |
92
|
fveq2d |
⊢ ( 𝑦 = ( 𝑏 − 𝑎 ) → ( 𝐹 ‘ ( 0 − 𝑦 ) ) = ( 𝐹 ‘ ( 0 − ( 𝑏 − 𝑎 ) ) ) ) |
94 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑏 − 𝑎 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) |
95 |
94
|
oveq2d |
⊢ ( 𝑦 = ( 𝑏 − 𝑎 ) → ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) ) |
96 |
93 95
|
breq12d |
⊢ ( 𝑦 = ( 𝑏 − 𝑎 ) → ( ( 𝐹 ‘ ( 0 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝐹 ‘ ( 0 − ( 𝑏 − 𝑎 ) ) ) ≤ ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) ) ) |
97 |
91 96
|
rspc2va |
⊢ ( ( ( 0 ∈ 𝑋 ∧ ( 𝑏 − 𝑎 ) ∈ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ ( 0 − ( 𝑏 − 𝑎 ) ) ) ≤ ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) ) |
98 |
82 86 87 97
|
syl21anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 0 − ( 𝑏 − 𝑎 ) ) ) ≤ ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) ) |
99 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
100 |
1 2 99 3
|
grpinvval2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑏 − 𝑎 ) ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑏 − 𝑎 ) ) = ( 0 − ( 𝑏 − 𝑎 ) ) ) |
101 |
4 86 100
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑏 − 𝑎 ) ) = ( 0 − ( 𝑏 − 𝑎 ) ) ) |
102 |
1 2 99
|
grpinvsub |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑏 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑏 − 𝑎 ) ) = ( 𝑎 − 𝑏 ) ) |
103 |
80 83 84 102
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑏 − 𝑎 ) ) = ( 𝑎 − 𝑏 ) ) |
104 |
101 103
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 0 − ( 𝑏 − 𝑎 ) ) = ( 𝑎 − 𝑏 ) ) |
105 |
104
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 0 − ( 𝑏 − 𝑎 ) ) ) = ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ) |
106 |
4 81
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝑋 ) |
107 |
|
pm5.501 |
⊢ ( 𝑥 = 0 → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ ( 𝑥 = 0 ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) |
108 |
|
bicom |
⊢ ( ( 𝑥 = 0 ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) ↔ ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) |
109 |
107 108
|
bitrdi |
⊢ ( 𝑥 = 0 → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) ) |
110 |
89
|
eqeq1d |
⊢ ( 𝑥 = 0 → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ ( 𝐹 ‘ 0 ) = 0 ) ) |
111 |
109 110
|
bitr3d |
⊢ ( 𝑥 = 0 → ( ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ↔ ( 𝐹 ‘ 0 ) = 0 ) ) |
112 |
111
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ 0 ∈ 𝑋 ) → ( 𝐹 ‘ 0 ) = 0 ) |
113 |
20 106 112
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 0 ) |
114 |
113
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝐹 ‘ 0 ) = 0 ) |
115 |
114
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) = ( 0 + ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) ) |
116 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝐹 : 𝑋 ⟶ ℝ ) |
117 |
116 86
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ∈ ℝ ) |
118 |
117
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ∈ ℂ ) |
119 |
118
|
addid2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 0 + ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) |
120 |
115 119
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 0 ) + ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) = ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) |
121 |
98 105 120
|
3brtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ≤ ( 𝐹 ‘ ( 𝑏 − 𝑎 ) ) ) |
122 |
79 121
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) ≤ ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) ) |
123 |
122
|
adantrlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) ≤ ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) ) |
124 |
|
eleq1w |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ∈ 𝑋 ↔ 𝑏 ∈ 𝑋 ) ) |
125 |
124
|
anbi1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ↔ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ) |
126 |
125
|
anbi2d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) ) ) |
127 |
|
fvoveq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) = ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ) |
128 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑐 − 𝑎 ) = ( 𝑐 − 𝑏 ) ) |
129 |
128
|
fveq2d |
⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) = ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ) |
130 |
127 129
|
breq12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) ≤ ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) ↔ ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ≤ ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ) ) |
131 |
126 130
|
imbi12d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) ≤ ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) ) ↔ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ≤ ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ) ) ) |
132 |
131 122
|
chvarvv |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ≤ ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ) |
133 |
132
|
adantrll |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ≤ ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ) |
134 |
42 46 50 53 123 133
|
le2addd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑎 − 𝑐 ) ) + ( 𝐹 ‘ ( 𝑏 − 𝑐 ) ) ) ≤ ( ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) + ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ) ) |
135 |
36 47 54 71 134
|
letrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ≤ ( ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) + ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ) ) |
136 |
18
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) = ( 𝐹 ‘ ( 𝑎 − 𝑏 ) ) ) |
137 |
|
opelxpi |
⊢ ( ( 𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ) → 〈 𝑐 , 𝑎 〉 ∈ ( 𝑋 × 𝑋 ) ) |
138 |
39 38 137
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → 〈 𝑐 , 𝑎 〉 ∈ ( 𝑋 × 𝑋 ) ) |
139 |
|
fvco3 |
⊢ ( ( − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ 〈 𝑐 , 𝑎 〉 ∈ ( 𝑋 × 𝑋 ) ) → ( ( 𝐹 ∘ − ) ‘ 〈 𝑐 , 𝑎 〉 ) = ( 𝐹 ‘ ( − ‘ 〈 𝑐 , 𝑎 〉 ) ) ) |
140 |
9 138 139
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝐹 ∘ − ) ‘ 〈 𝑐 , 𝑎 〉 ) = ( 𝐹 ‘ ( − ‘ 〈 𝑐 , 𝑎 〉 ) ) ) |
141 |
|
df-ov |
⊢ ( 𝑐 ( 𝐹 ∘ − ) 𝑎 ) = ( ( 𝐹 ∘ − ) ‘ 〈 𝑐 , 𝑎 〉 ) |
142 |
|
df-ov |
⊢ ( 𝑐 − 𝑎 ) = ( − ‘ 〈 𝑐 , 𝑎 〉 ) |
143 |
142
|
fveq2i |
⊢ ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) = ( 𝐹 ‘ ( − ‘ 〈 𝑐 , 𝑎 〉 ) ) |
144 |
140 141 143
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 ( 𝐹 ∘ − ) 𝑎 ) = ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) ) |
145 |
|
opelxpi |
⊢ ( ( 𝑐 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → 〈 𝑐 , 𝑏 〉 ∈ ( 𝑋 × 𝑋 ) ) |
146 |
39 43 145
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → 〈 𝑐 , 𝑏 〉 ∈ ( 𝑋 × 𝑋 ) ) |
147 |
|
fvco3 |
⊢ ( ( − : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ 〈 𝑐 , 𝑏 〉 ∈ ( 𝑋 × 𝑋 ) ) → ( ( 𝐹 ∘ − ) ‘ 〈 𝑐 , 𝑏 〉 ) = ( 𝐹 ‘ ( − ‘ 〈 𝑐 , 𝑏 〉 ) ) ) |
148 |
9 146 147
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝐹 ∘ − ) ‘ 〈 𝑐 , 𝑏 〉 ) = ( 𝐹 ‘ ( − ‘ 〈 𝑐 , 𝑏 〉 ) ) ) |
149 |
|
df-ov |
⊢ ( 𝑐 ( 𝐹 ∘ − ) 𝑏 ) = ( ( 𝐹 ∘ − ) ‘ 〈 𝑐 , 𝑏 〉 ) |
150 |
|
df-ov |
⊢ ( 𝑐 − 𝑏 ) = ( − ‘ 〈 𝑐 , 𝑏 〉 ) |
151 |
150
|
fveq2i |
⊢ ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) = ( 𝐹 ‘ ( − ‘ 〈 𝑐 , 𝑏 〉 ) ) |
152 |
148 149 151
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑐 ( 𝐹 ∘ − ) 𝑏 ) = ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ) |
153 |
144 152
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( ( 𝑐 ( 𝐹 ∘ − ) 𝑎 ) + ( 𝑐 ( 𝐹 ∘ − ) 𝑏 ) ) = ( ( 𝐹 ‘ ( 𝑐 − 𝑎 ) ) + ( 𝐹 ‘ ( 𝑐 − 𝑏 ) ) ) ) |
154 |
135 136 153
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ) ) → ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) ≤ ( ( 𝑐 ( 𝐹 ∘ − ) 𝑎 ) + ( 𝑐 ( 𝐹 ∘ − ) 𝑏 ) ) ) |
155 |
154
|
expr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑐 ∈ 𝑋 → ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) ≤ ( ( 𝑐 ( 𝐹 ∘ − ) 𝑎 ) + ( 𝑐 ( 𝐹 ∘ − ) 𝑏 ) ) ) ) |
156 |
155
|
ralrimiv |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ∀ 𝑐 ∈ 𝑋 ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) ≤ ( ( 𝑐 ( 𝐹 ∘ − ) 𝑎 ) + ( 𝑐 ( 𝐹 ∘ − ) 𝑏 ) ) ) |
157 |
33 156
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ∧ ∀ 𝑐 ∈ 𝑋 ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) ≤ ( ( 𝑐 ( 𝐹 ∘ − ) 𝑎 ) + ( 𝑐 ( 𝐹 ∘ − ) 𝑏 ) ) ) ) |
158 |
157
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ∧ ∀ 𝑐 ∈ 𝑋 ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) ≤ ( ( 𝑐 ( 𝐹 ∘ − ) 𝑎 ) + ( 𝑐 ( 𝐹 ∘ − ) 𝑏 ) ) ) ) |
159 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
160 |
|
ismet |
⊢ ( 𝑋 ∈ V → ( ( 𝐹 ∘ − ) ∈ ( Met ‘ 𝑋 ) ↔ ( ( 𝐹 ∘ − ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ∧ ∀ 𝑐 ∈ 𝑋 ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) ≤ ( ( 𝑐 ( 𝐹 ∘ − ) 𝑎 ) + ( 𝑐 ( 𝐹 ∘ − ) 𝑏 ) ) ) ) ) ) |
161 |
159 160
|
ax-mp |
⊢ ( ( 𝐹 ∘ − ) ∈ ( Met ‘ 𝑋 ) ↔ ( ( 𝐹 ∘ − ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) = 0 ↔ 𝑎 = 𝑏 ) ∧ ∀ 𝑐 ∈ 𝑋 ( 𝑎 ( 𝐹 ∘ − ) 𝑏 ) ≤ ( ( 𝑐 ( 𝐹 ∘ − ) 𝑎 ) + ( 𝑐 ( 𝐹 ∘ − ) 𝑏 ) ) ) ) ) |
162 |
11 158 161
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐹 ∘ − ) ∈ ( Met ‘ 𝑋 ) ) |