Metamath Proof Explorer


Theorem nrmo

Description: "At most one" restricted existential quantifier for a statement which is never true. (Contributed by Thierry Arnoux, 27-Nov-2023)

Ref Expression
Hypothesis nrmo.1 ( 𝑥𝐴 → ¬ 𝜑 )
Assertion nrmo ∃* 𝑥𝐴 𝜑

Proof

Step Hyp Ref Expression
1 nrmo.1 ( 𝑥𝐴 → ¬ 𝜑 )
2 mofal ∃* 𝑥
3 1 imori ( ¬ 𝑥𝐴 ∨ ¬ 𝜑 )
4 ianor ( ¬ ( 𝑥𝐴𝜑 ) ↔ ( ¬ 𝑥𝐴 ∨ ¬ 𝜑 ) )
5 3 4 mpbir ¬ ( 𝑥𝐴𝜑 )
6 5 bifal ( ( 𝑥𝐴𝜑 ) ↔ ⊥ )
7 6 mobii ( ∃* 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∃* 𝑥 ⊥ )
8 2 7 mpbir ∃* 𝑥 ( 𝑥𝐴𝜑 )
9 df-rmo ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥𝐴𝜑 ) )
10 8 9 mpbir ∃* 𝑥𝐴 𝜑