Metamath Proof Explorer


Theorem nrmreg

Description: A normal T_1 space is regular Hausdorff. In other words, a T_4 space is T_3 . One can get away with slightly weaker assumptions; see nrmr0reg . (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion nrmreg ( ( 𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre ) → 𝐽 ∈ Reg )

Proof

Step Hyp Ref Expression
1 t1r0 ( 𝐽 ∈ Fre → ( KQ ‘ 𝐽 ) ∈ Fre )
2 nrmr0reg ( ( 𝐽 ∈ Nrm ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) → 𝐽 ∈ Reg )
3 1 2 sylan2 ( ( 𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre ) → 𝐽 ∈ Reg )