| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝐽  ∈  Nrm  ∧  ( 𝐶  ∈  ( Clsd ‘ 𝐽 )  ∧  𝐷  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝐶  ∩  𝐷 )  =  ∅ ) )  →  𝐽  ∈  Nrm ) | 
						
							| 2 |  | simpr2 | ⊢ ( ( 𝐽  ∈  Nrm  ∧  ( 𝐶  ∈  ( Clsd ‘ 𝐽 )  ∧  𝐷  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝐶  ∩  𝐷 )  =  ∅ ) )  →  𝐷  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 3 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 4 | 3 | cldopn | ⊢ ( 𝐷  ∈  ( Clsd ‘ 𝐽 )  →  ( ∪  𝐽  ∖  𝐷 )  ∈  𝐽 ) | 
						
							| 5 | 2 4 | syl | ⊢ ( ( 𝐽  ∈  Nrm  ∧  ( 𝐶  ∈  ( Clsd ‘ 𝐽 )  ∧  𝐷  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝐶  ∩  𝐷 )  =  ∅ ) )  →  ( ∪  𝐽  ∖  𝐷 )  ∈  𝐽 ) | 
						
							| 6 |  | simpr1 | ⊢ ( ( 𝐽  ∈  Nrm  ∧  ( 𝐶  ∈  ( Clsd ‘ 𝐽 )  ∧  𝐷  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝐶  ∩  𝐷 )  =  ∅ ) )  →  𝐶  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 7 |  | simpr3 | ⊢ ( ( 𝐽  ∈  Nrm  ∧  ( 𝐶  ∈  ( Clsd ‘ 𝐽 )  ∧  𝐷  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝐶  ∩  𝐷 )  =  ∅ ) )  →  ( 𝐶  ∩  𝐷 )  =  ∅ ) | 
						
							| 8 | 3 | cldss | ⊢ ( 𝐶  ∈  ( Clsd ‘ 𝐽 )  →  𝐶  ⊆  ∪  𝐽 ) | 
						
							| 9 |  | reldisj | ⊢ ( 𝐶  ⊆  ∪  𝐽  →  ( ( 𝐶  ∩  𝐷 )  =  ∅  ↔  𝐶  ⊆  ( ∪  𝐽  ∖  𝐷 ) ) ) | 
						
							| 10 | 6 8 9 | 3syl | ⊢ ( ( 𝐽  ∈  Nrm  ∧  ( 𝐶  ∈  ( Clsd ‘ 𝐽 )  ∧  𝐷  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝐶  ∩  𝐷 )  =  ∅ ) )  →  ( ( 𝐶  ∩  𝐷 )  =  ∅  ↔  𝐶  ⊆  ( ∪  𝐽  ∖  𝐷 ) ) ) | 
						
							| 11 | 7 10 | mpbid | ⊢ ( ( 𝐽  ∈  Nrm  ∧  ( 𝐶  ∈  ( Clsd ‘ 𝐽 )  ∧  𝐷  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝐶  ∩  𝐷 )  =  ∅ ) )  →  𝐶  ⊆  ( ∪  𝐽  ∖  𝐷 ) ) | 
						
							| 12 |  | nrmsep3 | ⊢ ( ( 𝐽  ∈  Nrm  ∧  ( ( ∪  𝐽  ∖  𝐷 )  ∈  𝐽  ∧  𝐶  ∈  ( Clsd ‘ 𝐽 )  ∧  𝐶  ⊆  ( ∪  𝐽  ∖  𝐷 ) ) )  →  ∃ 𝑥  ∈  𝐽 ( 𝐶  ⊆  𝑥  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑥 )  ⊆  ( ∪  𝐽  ∖  𝐷 ) ) ) | 
						
							| 13 | 1 5 6 11 12 | syl13anc | ⊢ ( ( 𝐽  ∈  Nrm  ∧  ( 𝐶  ∈  ( Clsd ‘ 𝐽 )  ∧  𝐷  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝐶  ∩  𝐷 )  =  ∅ ) )  →  ∃ 𝑥  ∈  𝐽 ( 𝐶  ⊆  𝑥  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑥 )  ⊆  ( ∪  𝐽  ∖  𝐷 ) ) ) | 
						
							| 14 |  | ssdifin0 | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 )  ⊆  ( ∪  𝐽  ∖  𝐷 )  →  ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 )  ∩  𝐷 )  =  ∅ ) | 
						
							| 15 | 14 | anim2i | ⊢ ( ( 𝐶  ⊆  𝑥  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑥 )  ⊆  ( ∪  𝐽  ∖  𝐷 ) )  →  ( 𝐶  ⊆  𝑥  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 )  ∩  𝐷 )  =  ∅ ) ) | 
						
							| 16 | 15 | reximi | ⊢ ( ∃ 𝑥  ∈  𝐽 ( 𝐶  ⊆  𝑥  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑥 )  ⊆  ( ∪  𝐽  ∖  𝐷 ) )  →  ∃ 𝑥  ∈  𝐽 ( 𝐶  ⊆  𝑥  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 )  ∩  𝐷 )  =  ∅ ) ) | 
						
							| 17 | 13 16 | syl | ⊢ ( ( 𝐽  ∈  Nrm  ∧  ( 𝐶  ∈  ( Clsd ‘ 𝐽 )  ∧  𝐷  ∈  ( Clsd ‘ 𝐽 )  ∧  ( 𝐶  ∩  𝐷 )  =  ∅ ) )  →  ∃ 𝑥  ∈  𝐽 ( 𝐶  ⊆  𝑥  ∧  ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 )  ∩  𝐷 )  =  ∅ ) ) |