| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nrmtngdist.t |
⊢ 𝑇 = ( 𝐺 toNrmGrp ( norm ‘ 𝐺 ) ) |
| 2 |
|
nrmtngdist.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 3 |
|
fvex |
⊢ ( norm ‘ 𝐺 ) ∈ V |
| 4 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
| 5 |
1 4
|
tngds |
⊢ ( ( norm ‘ 𝐺 ) ∈ V → ( ( norm ‘ 𝐺 ) ∘ ( -g ‘ 𝐺 ) ) = ( dist ‘ 𝑇 ) ) |
| 6 |
3 5
|
ax-mp |
⊢ ( ( norm ‘ 𝐺 ) ∘ ( -g ‘ 𝐺 ) ) = ( dist ‘ 𝑇 ) |
| 7 |
|
eqid |
⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) |
| 8 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
| 9 |
|
eqid |
⊢ ( ( dist ‘ 𝐺 ) ↾ ( 𝑋 × 𝑋 ) ) = ( ( dist ‘ 𝐺 ) ↾ ( 𝑋 × 𝑋 ) ) |
| 10 |
7 4 8 2 9
|
isngp2 |
⊢ ( 𝐺 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ( ( norm ‘ 𝐺 ) ∘ ( -g ‘ 𝐺 ) ) = ( ( dist ‘ 𝐺 ) ↾ ( 𝑋 × 𝑋 ) ) ) ) |
| 11 |
10
|
simp3bi |
⊢ ( 𝐺 ∈ NrmGrp → ( ( norm ‘ 𝐺 ) ∘ ( -g ‘ 𝐺 ) ) = ( ( dist ‘ 𝐺 ) ↾ ( 𝑋 × 𝑋 ) ) ) |
| 12 |
6 11
|
eqtr3id |
⊢ ( 𝐺 ∈ NrmGrp → ( dist ‘ 𝑇 ) = ( ( dist ‘ 𝐺 ) ↾ ( 𝑋 × 𝑋 ) ) ) |