Step |
Hyp |
Ref |
Expression |
1 |
|
nrmtngdist.t |
⊢ 𝑇 = ( 𝐺 toNrmGrp ( norm ‘ 𝐺 ) ) |
2 |
|
ngpgrp |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
4 |
1 3
|
nrmtngdist |
⊢ ( 𝐺 ∈ NrmGrp → ( dist ‘ 𝑇 ) = ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) |
5 |
|
eqid |
⊢ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) = ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) |
6 |
3 5
|
ngpmet |
⊢ ( 𝐺 ∈ NrmGrp → ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝐺 ) ) ) |
7 |
4 6
|
eqeltrd |
⊢ ( 𝐺 ∈ NrmGrp → ( dist ‘ 𝑇 ) ∈ ( Met ‘ ( Base ‘ 𝐺 ) ) ) |
8 |
|
eqid |
⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) |
9 |
3 8
|
nmf |
⊢ ( 𝐺 ∈ NrmGrp → ( norm ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ℝ ) |
10 |
|
eqid |
⊢ ( dist ‘ 𝑇 ) = ( dist ‘ 𝑇 ) |
11 |
1 3 10
|
tngngp2 |
⊢ ( ( norm ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ℝ → ( 𝑇 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ ( dist ‘ 𝑇 ) ∈ ( Met ‘ ( Base ‘ 𝐺 ) ) ) ) ) |
12 |
9 11
|
syl |
⊢ ( 𝐺 ∈ NrmGrp → ( 𝑇 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ ( dist ‘ 𝑇 ) ∈ ( Met ‘ ( Base ‘ 𝐺 ) ) ) ) ) |
13 |
2 7 12
|
mpbir2and |
⊢ ( 𝐺 ∈ NrmGrp → 𝑇 ∈ NrmGrp ) |
14 |
2 9
|
jca |
⊢ ( 𝐺 ∈ NrmGrp → ( 𝐺 ∈ Grp ∧ ( norm ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ℝ ) ) |
15 |
|
reex |
⊢ ℝ ∈ V |
16 |
1 3 15
|
tngnm |
⊢ ( ( 𝐺 ∈ Grp ∧ ( norm ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ℝ ) → ( norm ‘ 𝐺 ) = ( norm ‘ 𝑇 ) ) |
17 |
14 16
|
syl |
⊢ ( 𝐺 ∈ NrmGrp → ( norm ‘ 𝐺 ) = ( norm ‘ 𝑇 ) ) |
18 |
17
|
eqcomd |
⊢ ( 𝐺 ∈ NrmGrp → ( norm ‘ 𝑇 ) = ( norm ‘ 𝐺 ) ) |
19 |
13 18
|
jca |
⊢ ( 𝐺 ∈ NrmGrp → ( 𝑇 ∈ NrmGrp ∧ ( norm ‘ 𝑇 ) = ( norm ‘ 𝐺 ) ) ) |