Metamath Proof Explorer


Theorem nrmtop

Description: A normal space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Assertion nrmtop ( 𝐽 ∈ Nrm → 𝐽 ∈ Top )

Proof

Step Hyp Ref Expression
1 isnrm ( 𝐽 ∈ Nrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥𝐽𝑦 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ∃ 𝑧𝐽 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) ) )
2 1 simplbi ( 𝐽 ∈ Nrm → 𝐽 ∈ Top )