Metamath Proof Explorer


Theorem nsb

Description: Any substitution in an always false formula is false. (Contributed by Steven Nguyen, 3-May-2023)

Ref Expression
Assertion nsb ( ∀ 𝑥 ¬ 𝜑 → ¬ [ 𝑡 / 𝑥 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 alnex ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 )
2 1 biimpi ( ∀ 𝑥 ¬ 𝜑 → ¬ ∃ 𝑥 𝜑 )
3 spsbe ( [ 𝑡 / 𝑥 ] 𝜑 → ∃ 𝑥 𝜑 )
4 2 3 nsyl ( ∀ 𝑥 ¬ 𝜑 → ¬ [ 𝑡 / 𝑥 ] 𝜑 )