Metamath Proof Explorer
		
		
		Theorem nsb
		Description:  Any substitution in an always false formula is false.  (Contributed by Steven Nguyen, 3-May-2023)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | nsb | ⊢  ( ∀ 𝑥 ¬  𝜑  →  ¬  [ 𝑡  /  𝑥 ] 𝜑 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alnex | ⊢ ( ∀ 𝑥 ¬  𝜑  ↔  ¬  ∃ 𝑥 𝜑 ) | 
						
							| 2 | 1 | biimpi | ⊢ ( ∀ 𝑥 ¬  𝜑  →  ¬  ∃ 𝑥 𝜑 ) | 
						
							| 3 |  | spsbe | ⊢ ( [ 𝑡  /  𝑥 ] 𝜑  →  ∃ 𝑥 𝜑 ) | 
						
							| 4 | 2 3 | nsyl | ⊢ ( ∀ 𝑥 ¬  𝜑  →  ¬  [ 𝑡  /  𝑥 ] 𝜑 ) |