| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							subgacs.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								1
							 | 
							subgss | 
							⊢ ( 𝑠  ∈  ( SubGrp ‘ 𝐺 )  →  𝑠  ⊆  𝐵 )  | 
						
						
							| 3 | 
							
								
							 | 
							velpw | 
							⊢ ( 𝑠  ∈  𝒫  𝐵  ↔  𝑠  ⊆  𝐵 )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							sylibr | 
							⊢ ( 𝑠  ∈  ( SubGrp ‘ 𝐺 )  →  𝑠  ∈  𝒫  𝐵 )  | 
						
						
							| 5 | 
							
								
							 | 
							eleq2w | 
							⊢ ( 𝑧  =  𝑠  →  ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑧  ↔  ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑠 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							raleqbi1dv | 
							⊢ ( 𝑧  =  𝑠  →  ( ∀ 𝑦  ∈  𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑧  ↔  ∀ 𝑦  ∈  𝑠 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑠 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							ralbidv | 
							⊢ ( 𝑧  =  𝑠  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑧  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑠 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑠 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							elrab3 | 
							⊢ ( 𝑠  ∈  𝒫  𝐵  →  ( 𝑠  ∈  { 𝑧  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑧 }  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑠 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑠 ) )  | 
						
						
							| 9 | 
							
								4 8
							 | 
							syl | 
							⊢ ( 𝑠  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝑠  ∈  { 𝑧  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑧 }  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑠 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑠 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							bicomd | 
							⊢ ( 𝑠  ∈  ( SubGrp ‘ 𝐺 )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑠 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑠  ↔  𝑠  ∈  { 𝑧  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑧 } ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							pm5.32i | 
							⊢ ( ( 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑠 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑠 )  ↔  ( 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑠  ∈  { 𝑧  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑧 } ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( -g ‘ 𝐺 )  =  ( -g ‘ 𝐺 )  | 
						
						
							| 14 | 
							
								1 12 13
							 | 
							isnsg3 | 
							⊢ ( 𝑠  ∈  ( NrmSGrp ‘ 𝐺 )  ↔  ( 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑠 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑠 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							elin | 
							⊢ ( 𝑠  ∈  ( ( SubGrp ‘ 𝐺 )  ∩  { 𝑧  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑧 } )  ↔  ( 𝑠  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑠  ∈  { 𝑧  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑧 } ) )  | 
						
						
							| 16 | 
							
								11 14 15
							 | 
							3bitr4i | 
							⊢ ( 𝑠  ∈  ( NrmSGrp ‘ 𝐺 )  ↔  𝑠  ∈  ( ( SubGrp ‘ 𝐺 )  ∩  { 𝑧  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑧 } ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							eqriv | 
							⊢ ( NrmSGrp ‘ 𝐺 )  =  ( ( SubGrp ‘ 𝐺 )  ∩  { 𝑧  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑧 } )  | 
						
						
							| 18 | 
							
								1
							 | 
							fvexi | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 19 | 
							
								
							 | 
							mreacs | 
							⊢ ( 𝐵  ∈  V  →  ( ACS ‘ 𝐵 )  ∈  ( Moore ‘ 𝒫  𝐵 ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							mp1i | 
							⊢ ( 𝐺  ∈  Grp  →  ( ACS ‘ 𝐵 )  ∈  ( Moore ‘ 𝒫  𝐵 ) )  | 
						
						
							| 21 | 
							
								1
							 | 
							subgacs | 
							⊢ ( 𝐺  ∈  Grp  →  ( SubGrp ‘ 𝐺 )  ∈  ( ACS ‘ 𝐵 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝐺  ∈  Grp )  | 
						
						
							| 23 | 
							
								1 12
							 | 
							grpcl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝐵 )  | 
						
						
							| 24 | 
							
								23
							 | 
							3expb | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝐵 )  | 
						
						
							| 25 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  𝐵 )  | 
						
						
							| 26 | 
							
								1 13
							 | 
							grpsubcl | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝐵  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝐵 )  | 
						
						
							| 27 | 
							
								22 24 25 26
							 | 
							syl3anc | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝐵 )  | 
						
						
							| 28 | 
							
								27
							 | 
							ralrimivva | 
							⊢ ( 𝐺  ∈  Grp  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝐵 )  | 
						
						
							| 29 | 
							
								
							 | 
							acsfn1c | 
							⊢ ( ( 𝐵  ∈  V  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝐵 )  →  { 𝑧  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑧 }  ∈  ( ACS ‘ 𝐵 ) )  | 
						
						
							| 30 | 
							
								18 28 29
							 | 
							sylancr | 
							⊢ ( 𝐺  ∈  Grp  →  { 𝑧  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑧 }  ∈  ( ACS ‘ 𝐵 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							mreincl | 
							⊢ ( ( ( ACS ‘ 𝐵 )  ∈  ( Moore ‘ 𝒫  𝐵 )  ∧  ( SubGrp ‘ 𝐺 )  ∈  ( ACS ‘ 𝐵 )  ∧  { 𝑧  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑧 }  ∈  ( ACS ‘ 𝐵 ) )  →  ( ( SubGrp ‘ 𝐺 )  ∩  { 𝑧  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑧 } )  ∈  ( ACS ‘ 𝐵 ) )  | 
						
						
							| 32 | 
							
								20 21 30 31
							 | 
							syl3anc | 
							⊢ ( 𝐺  ∈  Grp  →  ( ( SubGrp ‘ 𝐺 )  ∩  { 𝑧  ∈  𝒫  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝑧 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( -g ‘ 𝐺 ) 𝑥 )  ∈  𝑧 } )  ∈  ( ACS ‘ 𝐵 ) )  | 
						
						
							| 33 | 
							
								17 32
							 | 
							eqeltrid | 
							⊢ ( 𝐺  ∈  Grp  →  ( NrmSGrp ‘ 𝐺 )  ∈  ( ACS ‘ 𝐵 ) )  |