| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isnsg3.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
isnsg3.2 |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
isnsg3.3 |
⊢ − = ( -g ‘ 𝐺 ) |
| 4 |
|
nsgsubg |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 5 |
4
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 6 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 7 |
5 6
|
syl |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
| 8 |
|
simp2 |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → 𝐴 ∈ 𝑋 ) |
| 9 |
1
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝑋 ) |
| 10 |
5 9
|
syl |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → 𝑆 ⊆ 𝑋 ) |
| 11 |
|
simp3 |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → 𝐵 ∈ 𝑆 ) |
| 12 |
10 11
|
sseldd |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → 𝐵 ∈ 𝑋 ) |
| 13 |
1 2 3
|
grpaddsubass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) = ( 𝐴 + ( 𝐵 − 𝐴 ) ) ) |
| 14 |
7 8 12 8 13
|
syl13anc |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) = ( 𝐴 + ( 𝐵 − 𝐴 ) ) ) |
| 15 |
1 2 3
|
grpnpcan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐵 − 𝐴 ) + 𝐴 ) = 𝐵 ) |
| 16 |
7 12 8 15
|
syl3anc |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐵 − 𝐴 ) + 𝐴 ) = 𝐵 ) |
| 17 |
16 11
|
eqeltrd |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐵 − 𝐴 ) + 𝐴 ) ∈ 𝑆 ) |
| 18 |
|
simp1 |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 19 |
1 3
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 − 𝐴 ) ∈ 𝑋 ) |
| 20 |
7 12 8 19
|
syl3anc |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐵 − 𝐴 ) ∈ 𝑋 ) |
| 21 |
1 2
|
nsgbi |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐵 − 𝐴 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝐵 − 𝐴 ) + 𝐴 ) ∈ 𝑆 ↔ ( 𝐴 + ( 𝐵 − 𝐴 ) ) ∈ 𝑆 ) ) |
| 22 |
18 20 8 21
|
syl3anc |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → ( ( ( 𝐵 − 𝐴 ) + 𝐴 ) ∈ 𝑆 ↔ ( 𝐴 + ( 𝐵 − 𝐴 ) ) ∈ 𝑆 ) ) |
| 23 |
17 22
|
mpbid |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 + ( 𝐵 − 𝐴 ) ) ∈ 𝑆 ) |
| 24 |
14 23
|
eqeltrd |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆 ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) ∈ 𝑆 ) |