Metamath Proof Explorer


Theorem nsmallnq

Description: The is no smallest positive fraction. (Contributed by NM, 26-Apr-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)

Ref Expression
Assertion nsmallnq ( 𝐴Q → ∃ 𝑥 𝑥 <Q 𝐴 )

Proof

Step Hyp Ref Expression
1 halfnq ( 𝐴Q → ∃ 𝑥 ( 𝑥 +Q 𝑥 ) = 𝐴 )
2 eleq1a ( 𝐴Q → ( ( 𝑥 +Q 𝑥 ) = 𝐴 → ( 𝑥 +Q 𝑥 ) ∈ Q ) )
3 addnqf +Q : ( Q × Q ) ⟶ Q
4 3 fdmi dom +Q = ( Q × Q )
5 0nnq ¬ ∅ ∈ Q
6 4 5 ndmovrcl ( ( 𝑥 +Q 𝑥 ) ∈ Q → ( 𝑥Q𝑥Q ) )
7 ltaddnq ( ( 𝑥Q𝑥Q ) → 𝑥 <Q ( 𝑥 +Q 𝑥 ) )
8 6 7 syl ( ( 𝑥 +Q 𝑥 ) ∈ Q𝑥 <Q ( 𝑥 +Q 𝑥 ) )
9 2 8 syl6 ( 𝐴Q → ( ( 𝑥 +Q 𝑥 ) = 𝐴𝑥 <Q ( 𝑥 +Q 𝑥 ) ) )
10 breq2 ( ( 𝑥 +Q 𝑥 ) = 𝐴 → ( 𝑥 <Q ( 𝑥 +Q 𝑥 ) ↔ 𝑥 <Q 𝐴 ) )
11 9 10 mpbidi ( 𝐴Q → ( ( 𝑥 +Q 𝑥 ) = 𝐴𝑥 <Q 𝐴 ) )
12 11 eximdv ( 𝐴Q → ( ∃ 𝑥 ( 𝑥 +Q 𝑥 ) = 𝐴 → ∃ 𝑥 𝑥 <Q 𝐴 ) )
13 1 12 mpd ( 𝐴Q → ∃ 𝑥 𝑥 <Q 𝐴 )