| Step |
Hyp |
Ref |
Expression |
| 1 |
|
halfnq |
⊢ ( 𝐴 ∈ Q → ∃ 𝑥 ( 𝑥 +Q 𝑥 ) = 𝐴 ) |
| 2 |
|
eleq1a |
⊢ ( 𝐴 ∈ Q → ( ( 𝑥 +Q 𝑥 ) = 𝐴 → ( 𝑥 +Q 𝑥 ) ∈ Q ) ) |
| 3 |
|
addnqf |
⊢ +Q : ( Q × Q ) ⟶ Q |
| 4 |
3
|
fdmi |
⊢ dom +Q = ( Q × Q ) |
| 5 |
|
0nnq |
⊢ ¬ ∅ ∈ Q |
| 6 |
4 5
|
ndmovrcl |
⊢ ( ( 𝑥 +Q 𝑥 ) ∈ Q → ( 𝑥 ∈ Q ∧ 𝑥 ∈ Q ) ) |
| 7 |
|
ltaddnq |
⊢ ( ( 𝑥 ∈ Q ∧ 𝑥 ∈ Q ) → 𝑥 <Q ( 𝑥 +Q 𝑥 ) ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝑥 +Q 𝑥 ) ∈ Q → 𝑥 <Q ( 𝑥 +Q 𝑥 ) ) |
| 9 |
2 8
|
syl6 |
⊢ ( 𝐴 ∈ Q → ( ( 𝑥 +Q 𝑥 ) = 𝐴 → 𝑥 <Q ( 𝑥 +Q 𝑥 ) ) ) |
| 10 |
|
breq2 |
⊢ ( ( 𝑥 +Q 𝑥 ) = 𝐴 → ( 𝑥 <Q ( 𝑥 +Q 𝑥 ) ↔ 𝑥 <Q 𝐴 ) ) |
| 11 |
9 10
|
mpbidi |
⊢ ( 𝐴 ∈ Q → ( ( 𝑥 +Q 𝑥 ) = 𝐴 → 𝑥 <Q 𝐴 ) ) |
| 12 |
11
|
eximdv |
⊢ ( 𝐴 ∈ Q → ( ∃ 𝑥 ( 𝑥 +Q 𝑥 ) = 𝐴 → ∃ 𝑥 𝑥 <Q 𝐴 ) ) |
| 13 |
1 12
|
mpd |
⊢ ( 𝐴 ∈ Q → ∃ 𝑥 𝑥 <Q 𝐴 ) |