| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smndex1ibas.m | ⊢ 𝑀  =  ( EndoFMnd ‘ ℕ0 ) | 
						
							| 2 |  | smndex1ibas.n | ⊢ 𝑁  ∈  ℕ | 
						
							| 3 |  | smndex1ibas.i | ⊢ 𝐼  =  ( 𝑥  ∈  ℕ0  ↦  ( 𝑥  mod  𝑁 ) ) | 
						
							| 4 |  | smndex1ibas.g | ⊢ 𝐺  =  ( 𝑛  ∈  ( 0 ..^ 𝑁 )  ↦  ( 𝑥  ∈  ℕ0  ↦  𝑛 ) ) | 
						
							| 5 |  | smndex1mgm.b | ⊢ 𝐵  =  ( { 𝐼 }  ∪  ∪  𝑛  ∈  ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | 
						
							| 6 |  | smndex1mgm.s | ⊢ 𝑆  =  ( 𝑀  ↾s  𝐵 ) | 
						
							| 7 | 1 2 3 4 5 6 | smndex1n0mnd | ⊢ ( 0g ‘ 𝑀 )  ∉  𝐵 | 
						
							| 8 | 7 | neli | ⊢ ¬  ( 0g ‘ 𝑀 )  ∈  𝐵 | 
						
							| 9 | 8 | intnan | ⊢ ¬  ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵 ) | 
						
							| 10 | 9 | intnan | ⊢ ¬  ( ( 𝑀  ∈  Mnd  ∧  ( 𝑀  ↾s  𝐵 )  ∈  Mnd )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵 ) ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 12 |  | eqid | ⊢ ( 0g ‘ 𝑀 )  =  ( 0g ‘ 𝑀 ) | 
						
							| 13 | 11 12 | issubmndb | ⊢ ( 𝐵  ∈  ( SubMnd ‘ 𝑀 )  ↔  ( ( 𝑀  ∈  Mnd  ∧  ( 𝑀  ↾s  𝐵 )  ∈  Mnd )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵 ) ) ) | 
						
							| 14 | 10 13 | mtbir | ⊢ ¬  𝐵  ∈  ( SubMnd ‘ 𝑀 ) | 
						
							| 15 | 14 | nelir | ⊢ 𝐵  ∉  ( SubMnd ‘ 𝑀 ) |