Metamath Proof Explorer


Theorem nss

Description: Negation of subclass relationship. Exercise 13 of TakeutiZaring p. 18. (Contributed by NM, 25-Feb-1996) (Proof shortened by Andrew Salmon, 21-Jun-2011)

Ref Expression
Assertion nss ( ¬ 𝐴𝐵 ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) )

Proof

Step Hyp Ref Expression
1 exanali ( ∃ 𝑥 ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) ↔ ¬ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
2 dfss2 ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
3 1 2 xchbinxr ( ∃ 𝑥 ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) ↔ ¬ 𝐴𝐵 )
4 3 bicomi ( ¬ 𝐴𝐵 ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) )