| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nssd.1 | 
							⊢ ( 𝜑  →  𝑋  ∈  𝐴 )  | 
						
						
							| 2 | 
							
								
							 | 
							nssd.2 | 
							⊢ ( 𝜑  →  ¬  𝑋  ∈  𝐵 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							jca | 
							⊢ ( 𝜑  →  ( 𝑋  ∈  𝐴  ∧  ¬  𝑋  ∈  𝐵 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝑥  ∈  𝐴  ↔  𝑋  ∈  𝐴 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝑥  ∈  𝐵  ↔  𝑋  ∈  𝐵 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							notbid | 
							⊢ ( 𝑥  =  𝑋  →  ( ¬  𝑥  ∈  𝐵  ↔  ¬  𝑋  ∈  𝐵 ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							anbi12d | 
							⊢ ( 𝑥  =  𝑋  →  ( ( 𝑥  ∈  𝐴  ∧  ¬  𝑥  ∈  𝐵 )  ↔  ( 𝑋  ∈  𝐴  ∧  ¬  𝑋  ∈  𝐵 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							spcegv | 
							⊢ ( 𝑋  ∈  𝐴  →  ( ( 𝑋  ∈  𝐴  ∧  ¬  𝑋  ∈  𝐵 )  →  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ¬  𝑥  ∈  𝐵 ) ) )  | 
						
						
							| 9 | 
							
								1 3 8
							 | 
							sylc | 
							⊢ ( 𝜑  →  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ¬  𝑥  ∈  𝐵 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							nss | 
							⊢ ( ¬  𝐴  ⊆  𝐵  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ¬  𝑥  ∈  𝐵 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							sylibr | 
							⊢ ( 𝜑  →  ¬  𝐴  ⊆  𝐵 )  |