Step |
Hyp |
Ref |
Expression |
1 |
|
nssd.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
2 |
|
nssd.2 |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝐵 ) |
3 |
1 2
|
jca |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝐵 ) ) |
4 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴 ) ) |
5 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵 ) ) |
6 |
5
|
notbid |
⊢ ( 𝑥 = 𝑋 → ( ¬ 𝑥 ∈ 𝐵 ↔ ¬ 𝑋 ∈ 𝐵 ) ) |
7 |
4 6
|
anbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝐵 ) ) ) |
8 |
7
|
spcegv |
⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝑋 ∈ 𝐴 ∧ ¬ 𝑋 ∈ 𝐵 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) |
9 |
1 3 8
|
sylc |
⊢ ( 𝜑 → ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
10 |
|
nss |
⊢ ( ¬ 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
11 |
9 10
|
sylibr |
⊢ ( 𝜑 → ¬ 𝐴 ⊆ 𝐵 ) |