Metamath Proof Explorer


Theorem nssd

Description: Negation of subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses nssd.1 ( 𝜑𝑋𝐴 )
nssd.2 ( 𝜑 → ¬ 𝑋𝐵 )
Assertion nssd ( 𝜑 → ¬ 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 nssd.1 ( 𝜑𝑋𝐴 )
2 nssd.2 ( 𝜑 → ¬ 𝑋𝐵 )
3 1 2 jca ( 𝜑 → ( 𝑋𝐴 ∧ ¬ 𝑋𝐵 ) )
4 eleq1 ( 𝑥 = 𝑋 → ( 𝑥𝐴𝑋𝐴 ) )
5 eleq1 ( 𝑥 = 𝑋 → ( 𝑥𝐵𝑋𝐵 ) )
6 5 notbid ( 𝑥 = 𝑋 → ( ¬ 𝑥𝐵 ↔ ¬ 𝑋𝐵 ) )
7 4 6 anbi12d ( 𝑥 = 𝑋 → ( ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) ↔ ( 𝑋𝐴 ∧ ¬ 𝑋𝐵 ) ) )
8 7 spcegv ( 𝑋𝐴 → ( ( 𝑋𝐴 ∧ ¬ 𝑋𝐵 ) → ∃ 𝑥 ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) ) )
9 1 3 8 sylc ( 𝜑 → ∃ 𝑥 ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) )
10 nss ( ¬ 𝐴𝐵 ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) )
11 9 10 sylibr ( 𝜑 → ¬ 𝐴𝐵 )